Abstract

We describe a free-space holographic optical interconnect system designed for signal communication between chips and circuit boards on a common backplane. The system uses a transparent optical substrate-mode holograms to implement chip-to-chip interconnections and free space for board-to-board interconnections. Realization of a variety of interconnect functions with substrate-mode holograms is described. A three-board holographic interconnect system is also experimentally demonstrated.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, Proc. Inst. Electr. Eng. 72, 850 (1984).
  2. For example, see special issues on optical interconnections of Opt. Eng. 25(10) (1986) and IEEE J. Lightwave Technol. 9(12) (1991).
  3. R. K. Kostuk, J.-H. Yeh, M. Fink, Appl. Opt. 32, 5010 (1993).
    [CrossRef] [PubMed]
  4. J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, “Hybrid free-space optical bus system for board-to-board interconnections,” Appl. Opt. (to be published).
    [PubMed]
  5. T. A. Lane, J. A. Quam, B. O. Kahle, E. C. Parish, Proc. SPIE 1178, 24 (1989).
  6. J.-H. Yeh, R. K. Kostuk, Appl. Opt. 34, 3152 (1995).
    [CrossRef] [PubMed]
  7. J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, IEEE J. Lightwave Technol. 13, 1566 (1995).
    [CrossRef]
  8. S. K. Case, J. Opt. Soc. Am. 65, 724 (1975).
    [CrossRef]

1995 (2)

J.-H. Yeh, R. K. Kostuk, Appl. Opt. 34, 3152 (1995).
[CrossRef] [PubMed]

J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, IEEE J. Lightwave Technol. 13, 1566 (1995).
[CrossRef]

1993 (1)

1989 (1)

T. A. Lane, J. A. Quam, B. O. Kahle, E. C. Parish, Proc. SPIE 1178, 24 (1989).

1986 (1)

For example, see special issues on optical interconnections of Opt. Eng. 25(10) (1986) and IEEE J. Lightwave Technol. 9(12) (1991).

1984 (1)

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, Proc. Inst. Electr. Eng. 72, 850 (1984).

1975 (1)

Athale, R. A.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, Proc. Inst. Electr. Eng. 72, 850 (1984).

Case, S. K.

Fink, M.

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, Proc. Inst. Electr. Eng. 72, 850 (1984).

Kahle, B. O.

T. A. Lane, J. A. Quam, B. O. Kahle, E. C. Parish, Proc. SPIE 1178, 24 (1989).

Kostuk, R. K.

J.-H. Yeh, R. K. Kostuk, Appl. Opt. 34, 3152 (1995).
[CrossRef] [PubMed]

J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, IEEE J. Lightwave Technol. 13, 1566 (1995).
[CrossRef]

R. K. Kostuk, J.-H. Yeh, M. Fink, Appl. Opt. 32, 5010 (1993).
[CrossRef] [PubMed]

J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, “Hybrid free-space optical bus system for board-to-board interconnections,” Appl. Opt. (to be published).
[PubMed]

Kung, S.-Y.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, Proc. Inst. Electr. Eng. 72, 850 (1984).

Lane, T. A.

T. A. Lane, J. A. Quam, B. O. Kahle, E. C. Parish, Proc. SPIE 1178, 24 (1989).

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, Proc. Inst. Electr. Eng. 72, 850 (1984).

Parish, E. C.

T. A. Lane, J. A. Quam, B. O. Kahle, E. C. Parish, Proc. SPIE 1178, 24 (1989).

Quam, J. A.

T. A. Lane, J. A. Quam, B. O. Kahle, E. C. Parish, Proc. SPIE 1178, 24 (1989).

Tu, K.-Y.

J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, IEEE J. Lightwave Technol. 13, 1566 (1995).
[CrossRef]

J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, “Hybrid free-space optical bus system for board-to-board interconnections,” Appl. Opt. (to be published).
[PubMed]

Yeh, J.-H.

J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, IEEE J. Lightwave Technol. 13, 1566 (1995).
[CrossRef]

J.-H. Yeh, R. K. Kostuk, Appl. Opt. 34, 3152 (1995).
[CrossRef] [PubMed]

R. K. Kostuk, J.-H. Yeh, M. Fink, Appl. Opt. 32, 5010 (1993).
[CrossRef] [PubMed]

J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, “Hybrid free-space optical bus system for board-to-board interconnections,” Appl. Opt. (to be published).
[PubMed]

Appl. Opt. (2)

IEEE J. Lightwave Technol. (1)

J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, IEEE J. Lightwave Technol. 13, 1566 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

For example, see special issues on optical interconnections of Opt. Eng. 25(10) (1986) and IEEE J. Lightwave Technol. 9(12) (1991).

Proc. Inst. Electr. Eng. (1)

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, R. A. Athale, Proc. Inst. Electr. Eng. 72, 850 (1984).

Proc. SPIE (1)

T. A. Lane, J. A. Quam, B. O. Kahle, E. C. Parish, Proc. SPIE 1178, 24 (1989).

Other (1)

J.-H. Yeh, R. K. Kostuk, K.-Y. Tu, “Hybrid free-space optical bus system for board-to-board interconnections,” Appl. Opt. (to be published).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic for a general free-space holographic optical interconnect system implemented with SMH’s for board-to-board and chip-to-chip interconnections.

Fig. 2
Fig. 2

Four basic interconnect functions implemented with single SMH’s (S1 and S2) and multiplexed SMH’s (M1): (a), (e), point-to-point connections; (b), (f) bidirectional interconnections; (c), (g), fan-out; (d), (h) fan-in. The dotted lines represent the propagation directions of un-diffracted beams.

Fig. 3
Fig. 3

Bragg diagrams of single SMH’s S1 and S2 and 1 × 2 multiplexed SMH M1 shown in Fig. 2. ρ and σi are propagation vectors associated with grating vector Ki (i = 1,2).

Fig. 4
Fig. 4

Photograph of the three-board interconnect system used to demonstrate the interconnect functions.

Fig. 5
Fig. 5

Illustrations of the interconnect functions demonstrated on Boards A, B, and C.

Fig. 6
Fig. 6

Photographs of the output images observed on (a) Board A, (b) Board B, and (c) Board C respectively. The beam emitted from laser X is vertically oriented, and the beam emitted from laser Y is horizontal.

Metrics