Abstract

The continuum generated by soliton power variations and chromatic dispersion fluctuations along the line of a periodically amplified system is analytically studied and numerically verified. A new design of two-step dispersion profiling is derived that leads to a reduction factor of the continuum energy of more than 9.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Elgin, S. M. J. Kelly, Opt. Lett. 16, 787 (1993).
    [CrossRef]
  2. M. Nakazawa, H. Kubota, Electron. Lett. 31, 216 (1995).
    [CrossRef]
  3. W. Forysiak, F. M. Knox, N. J. Doran, J. Lightwave Technol. 12, 1330 (1994).
    [CrossRef]
  4. A. B. Grudinin, I. A. Goncharenko, S. Gray, D. N. Payne, presented at ECOC’95, the 21st European Conference on Optical Communication Brussels, Belgium, September 17–21, 1995.
  5. T. Georges, Opt. Fiber Technol. 1, 97 (1995).
    [CrossRef]
  6. A. Hasegawa, Y. Kodama, Opt. Lett. 15, 1443 (1990).
    [CrossRef] [PubMed]
  7. L. F. Mollenauer, S. G. Evangelides, H. A. Haus, J. Lightwave Technol. 99, 194 (1991).
    [CrossRef]
  8. K. J. Blow, N. J. Doran, IEEE Photon Technol. 3, 369 (1991).
    [CrossRef]
  9. D. J. Kaup, Phys. Rev. A 42, 5689 (1990).
    [CrossRef] [PubMed]
  10. B. Charbonnier, T. Georges, Electron. Lett. 32, 126 (1996).
    [CrossRef]

1996 (1)

B. Charbonnier, T. Georges, Electron. Lett. 32, 126 (1996).
[CrossRef]

1995 (2)

M. Nakazawa, H. Kubota, Electron. Lett. 31, 216 (1995).
[CrossRef]

T. Georges, Opt. Fiber Technol. 1, 97 (1995).
[CrossRef]

1994 (1)

W. Forysiak, F. M. Knox, N. J. Doran, J. Lightwave Technol. 12, 1330 (1994).
[CrossRef]

1993 (1)

1991 (2)

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, J. Lightwave Technol. 99, 194 (1991).
[CrossRef]

K. J. Blow, N. J. Doran, IEEE Photon Technol. 3, 369 (1991).
[CrossRef]

1990 (2)

Blow, K. J.

K. J. Blow, N. J. Doran, IEEE Photon Technol. 3, 369 (1991).
[CrossRef]

Charbonnier, B.

B. Charbonnier, T. Georges, Electron. Lett. 32, 126 (1996).
[CrossRef]

Doran, N. J.

W. Forysiak, F. M. Knox, N. J. Doran, J. Lightwave Technol. 12, 1330 (1994).
[CrossRef]

K. J. Blow, N. J. Doran, IEEE Photon Technol. 3, 369 (1991).
[CrossRef]

Elgin, J. N.

Evangelides, S. G.

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, J. Lightwave Technol. 99, 194 (1991).
[CrossRef]

Forysiak, W.

W. Forysiak, F. M. Knox, N. J. Doran, J. Lightwave Technol. 12, 1330 (1994).
[CrossRef]

Georges, T.

B. Charbonnier, T. Georges, Electron. Lett. 32, 126 (1996).
[CrossRef]

T. Georges, Opt. Fiber Technol. 1, 97 (1995).
[CrossRef]

Goncharenko, I. A.

A. B. Grudinin, I. A. Goncharenko, S. Gray, D. N. Payne, presented at ECOC’95, the 21st European Conference on Optical Communication Brussels, Belgium, September 17–21, 1995.

Gray, S.

A. B. Grudinin, I. A. Goncharenko, S. Gray, D. N. Payne, presented at ECOC’95, the 21st European Conference on Optical Communication Brussels, Belgium, September 17–21, 1995.

Grudinin, A. B.

A. B. Grudinin, I. A. Goncharenko, S. Gray, D. N. Payne, presented at ECOC’95, the 21st European Conference on Optical Communication Brussels, Belgium, September 17–21, 1995.

Hasegawa, A.

Haus, H. A.

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, J. Lightwave Technol. 99, 194 (1991).
[CrossRef]

Kaup, D. J.

D. J. Kaup, Phys. Rev. A 42, 5689 (1990).
[CrossRef] [PubMed]

Kelly, S. M. J.

Knox, F. M.

W. Forysiak, F. M. Knox, N. J. Doran, J. Lightwave Technol. 12, 1330 (1994).
[CrossRef]

Kodama, Y.

Kubota, H.

M. Nakazawa, H. Kubota, Electron. Lett. 31, 216 (1995).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, J. Lightwave Technol. 99, 194 (1991).
[CrossRef]

Nakazawa, M.

M. Nakazawa, H. Kubota, Electron. Lett. 31, 216 (1995).
[CrossRef]

Payne, D. N.

A. B. Grudinin, I. A. Goncharenko, S. Gray, D. N. Payne, presented at ECOC’95, the 21st European Conference on Optical Communication Brussels, Belgium, September 17–21, 1995.

Electron. Lett. (2)

M. Nakazawa, H. Kubota, Electron. Lett. 31, 216 (1995).
[CrossRef]

B. Charbonnier, T. Georges, Electron. Lett. 32, 126 (1996).
[CrossRef]

IEEE Photon Technol. (1)

K. J. Blow, N. J. Doran, IEEE Photon Technol. 3, 369 (1991).
[CrossRef]

J. Lightwave Technol. (2)

W. Forysiak, F. M. Knox, N. J. Doran, J. Lightwave Technol. 12, 1330 (1994).
[CrossRef]

L. F. Mollenauer, S. G. Evangelides, H. A. Haus, J. Lightwave Technol. 99, 194 (1991).
[CrossRef]

Opt. Fiber Technol. (1)

T. Georges, Opt. Fiber Technol. 1, 97 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

D. J. Kaup, Phys. Rev. A 42, 5689 (1990).
[CrossRef] [PubMed]

Other (1)

A. B. Grudinin, I. A. Goncharenko, S. Gray, D. N. Payne, presented at ECOC’95, the 21st European Conference on Optical Communication Brussels, Belgium, September 17–21, 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Analytical (solid curves) and numerical (symbols) evaluation of the continuum energy versus propagation distance for zA = 0.3 and zA = 0.8.

Fig. 2
Fig. 2

Analytical (solid curves) and numerical (symbols) evaluation of the maximum continuum energy versus Δ for zA = 0.3, 0.8, 2.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

i u z + 1 2 D ( z ) u t t + | u | 2 u = i Γ u + i ( G 1 ) × p = 1 n δ ( z p z A ) u ,
u ( 0 , t ) = a 0 / cosh ( t ) .
a z = [ Γ + ( G 1 ) p = 1 n δ ( z p z A ) ] a
i q z + 1 2 q t t + | q | 2 q = 1 2 ( 1 D ) q t t + ( 1 a 2 ) | q | 2 q .
B ( t , z ) = 0 z { [ a 2 ( z ) 1 ] | υ | 2 + 1 2 [ D ( z ) 1 ] υ t t υ } d z ,
f ( z ) = 0 z [ D ( z ) a 0 2 ( z ) ] d z .
i υ z + 1 2 υ t t + | υ | 2 υ = 1 2 D [ 2 i B t υ t + i B t t υ B t 2 υ ] = R 1 ( υ ) + R 2 ( υ ) ,
R 1 = i 4 sinh 2 ( t ) 1 cosh 5 ( t ) D ( z ) f ( z ) exp ( i Φ ) , R 2 = 2 2 tanh 2 ( t ) cosh 5 ( t ) D ( z ) f 2 ( z ) exp ( i Φ ) .
c j ( t , z ) = + d k ( exp ( i k t ) ( 1 + k 2 ) cosh ( π k / 2 ) G j ( k ) × { 1 cosh 2 ( t ) [ H j ( k , z ) + H j * ( k , z ) ] + H j ( k , z ) × [ k 2 1 + 2 i k t tanh ( t ) ] } ) ,
H j ( k , z ) = 0 z d z D ( z ) f j ( z ) exp [ i ( 1 + k 2 ) ( z z ) / 2 ] for j = 1 , 2 ,
G 1 ( k ) = 1 8 ( 1 + k 2 ) 2 , G 2 ( k ) = 13 i 1260 ( 9 + k 2 ) ( 1 + 227 k 2 21 k 4 104 ) .
E c ( z ) = + | c ( t , z ) | 2 d t ,
| H 1 ( 0 , z ) | 1 z ,
E c ( z ) 1 z .
H j ( k , p z A ) = H j ( k , z A ) 1 exp [ ( 1 + k 2 ) p z A / 2 ] 1 exp [ ( 1 + k 2 ) z A / 2 ]
0 z A | D ( z ) a 2 ( z ) | d z ,
z A = p = 1 n z p = p = 1 n D p z p ,
H 1 ( k , z A ) H ( z A ) 0 z A D ( z ) f ( z ) d z .
D ( η ) = 1 2 ( 1 η ) ( G + 1 ) log ( G ) 2 ( G 1 η 1 ) ( 1 η ) G G 1 η + η .

Metrics