Abstract

A compact, low-threshold, multipass optical parametric amplifier has been developed for the conversion of short-pulse (360-ps) 1064-nm Nd:YAG laser radiation into eye-safe 1572-nm radiation for laser ranging and radar applications. The amplifier had a threshold pump power of as low as 45 μJ, and at three to four times this threshold pump power the amplifier converted 30% of the input 1064-nm radiation into 1572-nm output radiation.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See the feature on optical parametric oscillation and amplification, J. Opt. Soc. Am. B 10, 1656–1790; the feature on optical parametric oscillation, J. Opt. Soc. Am. B 10, 2148–2243 (1993);and the feature on optical parametric devices, J. Opt. Soc. Am. B 12, 2084–2322 (1995).
  2. R. L. Byer, Treatise in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1973), pp. 587–702;S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
    [CrossRef]
  3. R. Baumgartner, R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
    [CrossRef]
  4. J. J. Zayhowski, C. Dill, Opt. Lett. 19, 1429 (1994).
    [CrossRef]
  5. L. R. Marshall, J. Kasinski, R. L. Burnham, Opt. Lett. 16, 1680 (1991); L. R. Marshall, A. Kaz, R. L. Burnham, Proc. SPIE 1627, 262 (1992).
    [CrossRef] [PubMed]
  6. K. Kato, IEEE J. Quantum Electron. 15, 432 (1979);W. M. Theis, G. B. Norris, M. D. Porter, Appl. Phys. Lett. 46, 1033 (1985);J. M. Breteau, C. Jourdain, T. Lepine, F. Simon, in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), p. 137.
    [CrossRef]

1994 (1)

J. J. Zayhowski, C. Dill, Opt. Lett. 19, 1429 (1994).
[CrossRef]

1991 (1)

1979 (2)

K. Kato, IEEE J. Quantum Electron. 15, 432 (1979);W. M. Theis, G. B. Norris, M. D. Porter, Appl. Phys. Lett. 46, 1033 (1985);J. M. Breteau, C. Jourdain, T. Lepine, F. Simon, in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), p. 137.
[CrossRef]

R. Baumgartner, R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

Baumgartner, R.

R. Baumgartner, R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

Burnham, R. L.

Byer, R. L.

R. Baumgartner, R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

R. L. Byer, Treatise in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1973), pp. 587–702;S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
[CrossRef]

Dill, C.

J. J. Zayhowski, C. Dill, Opt. Lett. 19, 1429 (1994).
[CrossRef]

Kasinski, J.

Kato, K.

K. Kato, IEEE J. Quantum Electron. 15, 432 (1979);W. M. Theis, G. B. Norris, M. D. Porter, Appl. Phys. Lett. 46, 1033 (1985);J. M. Breteau, C. Jourdain, T. Lepine, F. Simon, in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), p. 137.
[CrossRef]

Marshall, L. R.

Zayhowski, J. J.

J. J. Zayhowski, C. Dill, Opt. Lett. 19, 1429 (1994).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Baumgartner, R. L. Byer, IEEE J. Quantum Electron. 15, 432 (1979).
[CrossRef]

K. Kato, IEEE J. Quantum Electron. 15, 432 (1979);W. M. Theis, G. B. Norris, M. D. Porter, Appl. Phys. Lett. 46, 1033 (1985);J. M. Breteau, C. Jourdain, T. Lepine, F. Simon, in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceeding Series (Optical Society of America, Washington, D.C., 1993), p. 137.
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (1)

R. L. Byer, Treatise in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1973), pp. 587–702;S. J. Brosnan, R. L. Byer, IEEE J. Quantum Electron. 15, 415 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Multipass OPA showing four passes of the pump radiation through the nonlinear crystal. The lens is placed one focal length from the roof prism and one focal length from the mirror.

Fig. 2
Fig. 2

(a) Output pulse energies for a parametric amplifier in which the pump radiation travels through a non-critically phase-matched KTP crystal eight times (twice the number of passes shown in Fig. 1). The signal radiation begins efficient generation at a pump threshold of 52 μJ. (b) Parametric amplification efficiency as a function of input pump (1064-nm) energy. A maximum of 54% of the output radiation was signal (1572-nm) radiation corresponding to 80% pump depletion. Because of OPA coating losses at the pump wavelength, 30% of the input pump energy was converted into output signal energy. The maximum theoretical conversion efficiency of pump radiation to signal radiation is 67%.

Fig. 3
Fig. 3

(a) Temporal profiles of the OPA output pump radiation for various input energies. Above threshold, the pump-pulse profile is dramatically changed owing to conversion to signal and idler radiation, (b) Temporal profiles of the OPA output signal radiation for various output signal energies corresponding to the pump energies in (a). Near threshold, the signal radiation has a significantly shorter pulse duration than the pump radiation, and the signal energy is very sensitive to small changes in the pump energy. Pulse-to-pulse variations in the signal energy near threshold were consistent with pulse-to-pulse variations in the input pump energy.

Metrics