Abstract

The existence of solitary waves in superstructure Bragg gratings is experimentally demonstrated, confirming theoretical predictions. We observe nonlinear compression as a result of a combination of the negative dispersion of the grating and the nonlinear phase shift associated with the pulse intensity. We also demonstrate that, in a superstructure Bragg grating, the dispersion is continuously tunable from normal to anomalous, which allows us to manipulate the shape of the transmitted pulse.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellette, Electron. Lett. 30, 1620 (1994).
    [CrossRef]
  2. P. St. J. Russel, Phys. Rev. Lett. 56, 596 (1986).
    [CrossRef]
  3. V. Jayaraman, D. Cohen, L. Coldren, Appl. Phys. Lett. 60, 2321 (1992).
    [CrossRef]
  4. C. M. de Sterke, N. G. R. Broderick, Opt. Lett. 20, 2039 (1995).
    [CrossRef] [PubMed]
  5. N. G. R. Broderick, C. M. de Sterke, B. J. Eggleton, Phys. Rev. E 52, 5788 (1995).
    [CrossRef]
  6. A. B. Aceves, S. Wabnitz, Phys. Lett. A 141, 37 (1989).
    [CrossRef]
  7. C. M. de Sterke, J. E. Sipe, in Progress in Optics XXXIII, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Chap. III.
  8. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
    [CrossRef] [PubMed]
  9. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 4.

1996 (1)

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

1995 (2)

C. M. de Sterke, N. G. R. Broderick, Opt. Lett. 20, 2039 (1995).
[CrossRef] [PubMed]

N. G. R. Broderick, C. M. de Sterke, B. J. Eggleton, Phys. Rev. E 52, 5788 (1995).
[CrossRef]

1994 (1)

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellette, Electron. Lett. 30, 1620 (1994).
[CrossRef]

1993 (1)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

1992 (1)

V. Jayaraman, D. Cohen, L. Coldren, Appl. Phys. Lett. 60, 2321 (1992).
[CrossRef]

1989 (1)

A. B. Aceves, S. Wabnitz, Phys. Lett. A 141, 37 (1989).
[CrossRef]

1986 (1)

P. St. J. Russel, Phys. Rev. Lett. 56, 596 (1986).
[CrossRef]

Aceves, A. B.

A. B. Aceves, S. Wabnitz, Phys. Lett. A 141, 37 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 4.

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Broderick, N. G. R.

C. M. de Sterke, N. G. R. Broderick, Opt. Lett. 20, 2039 (1995).
[CrossRef] [PubMed]

N. G. R. Broderick, C. M. de Sterke, B. J. Eggleton, Phys. Rev. E 52, 5788 (1995).
[CrossRef]

Cohen, D.

V. Jayaraman, D. Cohen, L. Coldren, Appl. Phys. Lett. 60, 2321 (1992).
[CrossRef]

Coldren, L.

V. Jayaraman, D. Cohen, L. Coldren, Appl. Phys. Lett. 60, 2321 (1992).
[CrossRef]

de Sterke, C. M.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

N. G. R. Broderick, C. M. de Sterke, B. J. Eggleton, Phys. Rev. E 52, 5788 (1995).
[CrossRef]

C. M. de Sterke, N. G. R. Broderick, Opt. Lett. 20, 2039 (1995).
[CrossRef] [PubMed]

C. M. de Sterke, J. E. Sipe, in Progress in Optics XXXIII, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Chap. III.

Eggleton, B. J.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

N. G. R. Broderick, C. M. de Sterke, B. J. Eggleton, Phys. Rev. E 52, 5788 (1995).
[CrossRef]

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellette, Electron. Lett. 30, 1620 (1994).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Jayaraman, V.

V. Jayaraman, D. Cohen, L. Coldren, Appl. Phys. Lett. 60, 2321 (1992).
[CrossRef]

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellette, Electron. Lett. 30, 1620 (1994).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Ouellette, F.

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellette, Electron. Lett. 30, 1620 (1994).
[CrossRef]

Poladian, L.

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellette, Electron. Lett. 30, 1620 (1994).
[CrossRef]

Russel, P. St. J.

P. St. J. Russel, Phys. Rev. Lett. 56, 596 (1986).
[CrossRef]

Sipe, J. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

C. M. de Sterke, J. E. Sipe, in Progress in Optics XXXIII, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Chap. III.

Slusher, R. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Wabnitz, S.

A. B. Aceves, S. Wabnitz, Phys. Lett. A 141, 37 (1989).
[CrossRef]

Appl. Phys. Lett. (2)

V. Jayaraman, D. Cohen, L. Coldren, Appl. Phys. Lett. 60, 2321 (1992).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, J. Albert, Appl. Phys. Lett. 62, 1035 (1993).
[CrossRef]

Electron. Lett. (1)

B. J. Eggleton, P. A. Krug, L. Poladian, F. Ouellette, Electron. Lett. 30, 1620 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Lett. A (1)

A. B. Aceves, S. Wabnitz, Phys. Lett. A 141, 37 (1989).
[CrossRef]

Phys. Rev. E (1)

N. G. R. Broderick, C. M. de Sterke, B. J. Eggleton, Phys. Rev. E 52, 5788 (1995).
[CrossRef]

Phys. Rev. Lett. (2)

P. St. J. Russel, Phys. Rev. Lett. 56, 596 (1986).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, J. E. Sipe, Phys. Rev. Lett. 76, 1627 (1996).
[CrossRef] [PubMed]

Other (2)

C. M. de Sterke, J. E. Sipe, in Progress in Optics XXXIII, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Chap. III.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dispersion relation for an infinite SBG, showing the relation between frequency (left axis) and wavelength (right axis) and reduced wave number. The parameter d is the spatial period of the superstructure (1 mm). In the experiment we concentrate on the gaps labeled I, II, and III.

Fig. 2
Fig. 2

Measured reflection spectrum of the SBG obtained by strain tuning the grating central response with respect to the laser wavelength (bandwidth, 0.03 nm; solid curve) and the calculated reflection spectrum (dashed curve). Note that there are 25 periods in the superstructure. The reflection peaks labeled I, II, and III correspond to those of Fig. 1.

Fig. 3
Fig. 3

Transmitted pulse having a FWHM of ≈ 100 ps when the grating is tuned far from the Bragg resonances (dotted curve) and the transmitted pulse when the grating is tuned such that the pulse is centered at 1052.7 nm, which is on the short-wavelength side of peak I (solid curve). The transmitted pulse is substantially compressed to approximately 38 ps.

Fig. 4
Fig. 4

Comparison between experimental (solid curves) and theoretical (dashed curves) transmitted intensities for different values of the applied strain. The pulse’s central wavelength with respect to the grating is (a) 1053.505 nm, (b) 1053.570 nm, (c) 1053.625 nm, (d) 1053.650 nm, (e) 1053.670 nm, and (f) 1053.680 nm.

Metrics