Abstract

We experimentally demonstrate the operation of a low-birefringence (low-bi) nonlinear-optical loop mirror (NOLM) that has the advantages of low switching energy, tolerance to timing jitter, and cascadability. Because cascading two all-optical logic gates is an important step toward high-speed optical signal processing and header processing in time-division-multiplexed networks, we also demonstrate the cascaded operation of two low-bi NOLM’s. Using a passively mode-locked fiber laser that produces 450-fs pulses at a wavelength of 1.55 μm, we achieve a 10.7:1 switching contrast ratio and a 2.7-pulse-widths-wide timing window after the cascaded gates. The results agree well with theoretical predictions and confirm the advantages of the long interaction length associated with orthogonally polarized pulses in low-bi (Δn ~ 3.0 × 10−6) polarization-maintaining fiber.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Islam, Ultrafast Fiber Switching Devices and Systems (Cambridge U. Press, Cambridge, 1992), Chap. 5.
  2. J. K. Lucek, K. Smith, Opt. Lett. 18, 1226 (1993).
    [CrossRef] [PubMed]
  3. K. Smith, N. J. Doran, P. G. J. Wigley, Opt. Lett. 15, 1294 (1990).
    [CrossRef] [PubMed]
  4. K. J. Blow, N. J. Doran, B. P. Nelson, Electron. Lett. 26, 962 (1990).
    [CrossRef]
  5. M. Jinno, T. Matsumoto, Opt. Lett. 16, 220 (1991).
    [CrossRef] [PubMed]
  6. K. J. Blow, N. J. Doran, B. K. Nayar, B. P. Nelson, Opt. Lett. 15, 248 (1990).
    [CrossRef] [PubMed]
  7. K. L. Hall, K. A. Rauschenbach, E. A. Swanson, S. R. Chinn, G. Raybon, IEEE Photon. Technol. Lett. 7, 935 (1995).
    [CrossRef]
  8. G. R. Williams, M. Vaziri, K. H. Ahn, B. C. Barnett, M. N. Islam, Opt. Lett. 20, 1671 (1995).
    [CrossRef] [PubMed]
  9. J. D. Moores, K. Bergman, H. A. Haus, E. P. Ippen, Opt. Lett. 16, 138 (1991).
    [CrossRef] [PubMed]
  10. N. A. Whitaker, H. Avramopoulos, P. M. W. French, M. C. Gabriel, R. E. LaMarche, Opt. Lett. 16, 1838 (1991).
  11. B. C. Barnett, L. Rahman, M. N. Islam, Y. C. Chen, P. Bhattacharya, W. Riha, K. V. Reddy, A. T. Howe, K. A. Stair, H. Iwamura, S. R. Friberg, T. Mukai, Opt. Lett. 20, 471 (1995).
    [CrossRef] [PubMed]
  12. M. N. Islam, E. R. Sunderman, R. H. Stolen, W. Pleibel, J. R. Simpson, Opt. Lett. 14, 811 (1989).
    [CrossRef] [PubMed]

1995

1993

1991

1990

1989

Ahn, K. H.

Avramopoulos, H.

Barnett, B. C.

Bergman, K.

Bhattacharya, P.

Blow, K. J.

K. J. Blow, N. J. Doran, B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

K. J. Blow, N. J. Doran, B. K. Nayar, B. P. Nelson, Opt. Lett. 15, 248 (1990).
[CrossRef] [PubMed]

Chen, Y. C.

Chinn, S. R.

K. L. Hall, K. A. Rauschenbach, E. A. Swanson, S. R. Chinn, G. Raybon, IEEE Photon. Technol. Lett. 7, 935 (1995).
[CrossRef]

Doran, N. J.

French, P. M. W.

Friberg, S. R.

Gabriel, M. C.

Hall, K. L.

K. L. Hall, K. A. Rauschenbach, E. A. Swanson, S. R. Chinn, G. Raybon, IEEE Photon. Technol. Lett. 7, 935 (1995).
[CrossRef]

Haus, H. A.

Howe, A. T.

Ippen, E. P.

Islam, M. N.

Iwamura, H.

Jinno, M.

LaMarche, R. E.

Lucek, J. K.

Matsumoto, T.

Moores, J. D.

Mukai, T.

Nayar, B. K.

Nelson, B. P.

K. J. Blow, N. J. Doran, B. K. Nayar, B. P. Nelson, Opt. Lett. 15, 248 (1990).
[CrossRef] [PubMed]

K. J. Blow, N. J. Doran, B. P. Nelson, Electron. Lett. 26, 962 (1990).
[CrossRef]

Pleibel, W.

Rahman, L.

Rauschenbach, K. A.

K. L. Hall, K. A. Rauschenbach, E. A. Swanson, S. R. Chinn, G. Raybon, IEEE Photon. Technol. Lett. 7, 935 (1995).
[CrossRef]

Raybon, G.

K. L. Hall, K. A. Rauschenbach, E. A. Swanson, S. R. Chinn, G. Raybon, IEEE Photon. Technol. Lett. 7, 935 (1995).
[CrossRef]

Reddy, K. V.

Riha, W.

Simpson, J. R.

Smith, K.

Stair, K. A.

Stolen, R. H.

Sunderman, E. R.

Swanson, E. A.

K. L. Hall, K. A. Rauschenbach, E. A. Swanson, S. R. Chinn, G. Raybon, IEEE Photon. Technol. Lett. 7, 935 (1995).
[CrossRef]

Vaziri, M.

Whitaker, N. A.

Wigley, P. G. J.

Williams, G. R.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for cascaded operation. The control pulse for the first gate is split at the fiber coupler and transmits only in the presence of the signal pulse. The output pulse from the first gate is then amplified by an erbium-doped fiber amplifier (EDFA) and sent into the second gate as the signal pulse. Only in the presence of the output pulse from the first gate does the second gate switch. EDFL, erbium-doped laser; PBS’s, polarization beam splitters; WP’s, λ/2 plates, PC’s, polarization controllers in the first gate, λ/2 plates in the second.

Fig. 2
Fig. 2

Input (solid curve) and output (dashed curve) autocorrelations of the pulse from the EDFL and the output pulse after the first logic gate and the EDFA.

Fig. 3
Fig. 3

(a) Experimental timing window for the gate made of in-line fiber optics. The contrast ratio is the difference between the energy in the presence and the absence of the signal pulse. The displacement is normalized to the pulse width, where Δ is the separation between the signal and the control pulse and τ is the width of the input pulse. The peak contrast is 26.7:1, and the timing window is 2.3 pulse widths wide. (b) Experimental timing window for the cascaded operation after the second gate. The peak contrast is 10.7:1, and the timing window is 2.7 pulse widths wide.

Metrics