Abstract

An optical scheme based on a single angularly dispersive element is proposed for canceling group-velocity dispersion for pulse propagation in dispersive media. It is demonstrated experimentally that a pulse duration of 100 fs is preserved throughout the travel of a 248-nm-pulse through a 75-mm-long fused-silica slab.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. Treacy, IEEE J. Quantum Electron. QE-5,454 (1969).
    [CrossRef]
  2. O. E. Martinez, J. P. Gordon, R. L. Fork, J. Opt. Soc. Am. A 1, 1003 (1984).
    [CrossRef]
  3. J. P. Gordon, R. L. Fork, Opt. Lett. 9, 153 (1984).
    [CrossRef] [PubMed]
  4. Z. Bor, B. Rácz, Opt. Commun. 54, 165 (1985).
    [CrossRef]
  5. S. Szatmári, G. Kühnle, P. Simon, Appl. Opt. 29, 5372 (1990).
    [CrossRef] [PubMed]
  6. S. Szatmári, F. P. Scháfer, Opt. Commun. 68, 196 (1988).
    [CrossRef]
  7. S. Szatmári, P. Simon, H. Gerhardt, Opt. Commun. 79, 64 (1990).
    [CrossRef]
  8. S. Szatmári, G. Kühnle, Opt. Commun. 69, 60 (1988).
    [CrossRef]
  9. O. E. Martinez, Opt. Commun. 59, 229 (1986).
    [CrossRef]
  10. O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
    [CrossRef]
  11. G. Szabó, Zs. Bor, Appl. Phys. B 50, 51 (1990).
    [CrossRef]

1990 (3)

S. Szatmári, G. Kühnle, P. Simon, Appl. Opt. 29, 5372 (1990).
[CrossRef] [PubMed]

S. Szatmári, P. Simon, H. Gerhardt, Opt. Commun. 79, 64 (1990).
[CrossRef]

G. Szabó, Zs. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

1989 (1)

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

1988 (2)

S. Szatmári, G. Kühnle, Opt. Commun. 69, 60 (1988).
[CrossRef]

S. Szatmári, F. P. Scháfer, Opt. Commun. 68, 196 (1988).
[CrossRef]

1986 (1)

O. E. Martinez, Opt. Commun. 59, 229 (1986).
[CrossRef]

1985 (1)

Z. Bor, B. Rácz, Opt. Commun. 54, 165 (1985).
[CrossRef]

1984 (2)

1969 (1)

E. B. Treacy, IEEE J. Quantum Electron. QE-5,454 (1969).
[CrossRef]

Bor, Z.

Z. Bor, B. Rácz, Opt. Commun. 54, 165 (1985).
[CrossRef]

Bor, Zs.

G. Szabó, Zs. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

Fork, R. L.

Gerhardt, H.

S. Szatmári, P. Simon, H. Gerhardt, Opt. Commun. 79, 64 (1990).
[CrossRef]

Gordon, J. P.

Kühnle, G.

Martinez, O. E.

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

O. E. Martinez, Opt. Commun. 59, 229 (1986).
[CrossRef]

O. E. Martinez, J. P. Gordon, R. L. Fork, J. Opt. Soc. Am. A 1, 1003 (1984).
[CrossRef]

Rácz, B.

Z. Bor, B. Rácz, Opt. Commun. 54, 165 (1985).
[CrossRef]

Scháfer, F. P.

S. Szatmári, F. P. Scháfer, Opt. Commun. 68, 196 (1988).
[CrossRef]

Simon, P.

S. Szatmári, G. Kühnle, P. Simon, Appl. Opt. 29, 5372 (1990).
[CrossRef] [PubMed]

S. Szatmári, P. Simon, H. Gerhardt, Opt. Commun. 79, 64 (1990).
[CrossRef]

Szabó, G.

G. Szabó, Zs. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

Szatmári, S.

S. Szatmári, P. Simon, H. Gerhardt, Opt. Commun. 79, 64 (1990).
[CrossRef]

S. Szatmári, G. Kühnle, P. Simon, Appl. Opt. 29, 5372 (1990).
[CrossRef] [PubMed]

S. Szatmári, F. P. Scháfer, Opt. Commun. 68, 196 (1988).
[CrossRef]

S. Szatmári, G. Kühnle, Opt. Commun. 69, 60 (1988).
[CrossRef]

Treacy, E. B.

E. B. Treacy, IEEE J. Quantum Electron. QE-5,454 (1969).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

G. Szabó, Zs. Bor, Appl. Phys. B 50, 51 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. B. Treacy, IEEE J. Quantum Electron. QE-5,454 (1969).
[CrossRef]

O. E. Martinez, IEEE J. Quantum Electron. 25, 2464 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (5)

Z. Bor, B. Rácz, Opt. Commun. 54, 165 (1985).
[CrossRef]

S. Szatmári, F. P. Scháfer, Opt. Commun. 68, 196 (1988).
[CrossRef]

S. Szatmári, P. Simon, H. Gerhardt, Opt. Commun. 79, 64 (1990).
[CrossRef]

S. Szatmári, G. Kühnle, Opt. Commun. 69, 60 (1988).
[CrossRef]

O. E. Martinez, Opt. Commun. 59, 229 (1986).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of GVD compensation for a positively chirped input pulse. The long- and short-wavelength components of the pulse fronts are indicated by the dashed and solid lines, respectively.

Fig. 2
Fig. 2

Experimental setup for the measurement of the spatially dependent pulse duration (a) without and (b) with the slab.

Fig. 3
Fig. 3

Pulse duration depending on the distance of the object plane from the grating (a) for a 3600-line/mm grating alone and (b) with a 7.5-cm fused-silica slab positioned 2.4 cm behind the grating (for the definition of the object plane see the text).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( d T d λ ) medium = l c d n g d λ ,
d T d λ = l λ c n ( d d λ ) 2 .
d n g d λ = λ n ( d d λ ) 2 .
d d λ = 1 d cos β ,
d = [ λ n ( d n g / d λ ) ] 1 / 2

Metrics