Abstract

We report an approach to the control of the longitudinal mode structure in erbium-doped fiber lasers that uses saturable absorbers and the spatial hole-burning effect in the laser cavity. Two- and three-mode fiber lasers are successfully demonstrated, and the laser output properties are compared with theoretical calculations.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Jauncey, L. Reekie, R. J. Mears, C. J. Rowe, Opt. Lett. 12,164 (1987).
    [CrossRef] [PubMed]
  2. P. R. Morkel, G. J. Cowle, D. N. Payne, Electron. Lett. 26,632 (1990).
    [CrossRef]
  3. H. Sabert, R. Ulrich, Opt. Lett. 18,873 (1993).
    [CrossRef] [PubMed]
  4. G. A. Ball, W. W. Morey, Opt. Lett. 17,420 (1992).
    [CrossRef] [PubMed]
  5. M. Horowitz, R. Daisy, B. Fischer, J. L. Zyskind, Opt. Lett. 19,1406 (1994); Electron. Lett. 30,648 (1994).
    [CrossRef] [PubMed]
  6. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, D. N. Payne, Opt. Lett. 20,875 (1995).
    [CrossRef] [PubMed]
  7. H. K. Kim, S. K. Kim, H. G. Park, B. Y. Kim, Opt. Lett.18,317 (1993).
  8. H. Y. Kim, B. K. Kim, S. H. Yun, B. Y. Kim, Opt. Lett. 20,1715 (1995).
  9. I. V. Hertel, A. S. Stamatovic, IEEE J. Quantum Electron. QE-11, 210 (1975).
    [CrossRef]
  10. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), p. 538.
  11. E. Desurvire, C. R. Giles, J. R. Simpson, IEEE J. Lightwave Technol. 7,2095 (1989).
    [CrossRef]
  12. W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, IEEE J. Quantum Electron. 27,1004 (1991).
    [CrossRef]
  13. F. Krausz, T. Brabec, Opt. Lett. 18,888 (1993).
    [CrossRef] [PubMed]

1995 (2)

1994 (1)

1993 (3)

1992 (1)

1991 (1)

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, IEEE J. Quantum Electron. 27,1004 (1991).
[CrossRef]

1990 (1)

P. R. Morkel, G. J. Cowle, D. N. Payne, Electron. Lett. 26,632 (1990).
[CrossRef]

1989 (1)

E. Desurvire, C. R. Giles, J. R. Simpson, IEEE J. Lightwave Technol. 7,2095 (1989).
[CrossRef]

1987 (1)

1975 (1)

I. V. Hertel, A. S. Stamatovic, IEEE J. Quantum Electron. QE-11, 210 (1975).
[CrossRef]

Ball, G. A.

Barnes, W. L.

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, IEEE J. Quantum Electron. 27,1004 (1991).
[CrossRef]

Brabec, T.

Cheng, Y.

Cowle, G. J.

P. R. Morkel, G. J. Cowle, D. N. Payne, Electron. Lett. 26,632 (1990).
[CrossRef]

Daisy, R.

Desurvire, E.

E. Desurvire, C. R. Giles, J. R. Simpson, IEEE J. Lightwave Technol. 7,2095 (1989).
[CrossRef]

Fischer, B.

Giles, C. R.

E. Desurvire, C. R. Giles, J. R. Simpson, IEEE J. Lightwave Technol. 7,2095 (1989).
[CrossRef]

Hertel, I. V.

I. V. Hertel, A. S. Stamatovic, IEEE J. Quantum Electron. QE-11, 210 (1975).
[CrossRef]

Horowitz, M.

Jauncey, I. M.

Kim, B. K.

H. Y. Kim, B. K. Kim, S. H. Yun, B. Y. Kim, Opt. Lett. 20,1715 (1995).

Kim, B. Y.

H. Y. Kim, B. K. Kim, S. H. Yun, B. Y. Kim, Opt. Lett. 20,1715 (1995).

H. K. Kim, S. K. Kim, H. G. Park, B. Y. Kim, Opt. Lett.18,317 (1993).

Kim, H. K.

H. K. Kim, S. K. Kim, H. G. Park, B. Y. Kim, Opt. Lett.18,317 (1993).

Kim, H. Y.

H. Y. Kim, B. K. Kim, S. H. Yun, B. Y. Kim, Opt. Lett. 20,1715 (1995).

Kim, S. K.

H. K. Kim, S. K. Kim, H. G. Park, B. Y. Kim, Opt. Lett.18,317 (1993).

Krausz, F.

Kringlebotn, J. T.

Laming, R. I.

Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, D. N. Payne, Opt. Lett. 20,875 (1995).
[CrossRef] [PubMed]

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, IEEE J. Quantum Electron. 27,1004 (1991).
[CrossRef]

Loh, W. H.

Mears, R. J.

Morey, W. W.

Morkel, P. R.

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, IEEE J. Quantum Electron. 27,1004 (1991).
[CrossRef]

P. R. Morkel, G. J. Cowle, D. N. Payne, Electron. Lett. 26,632 (1990).
[CrossRef]

Park, H. G.

H. K. Kim, S. K. Kim, H. G. Park, B. Y. Kim, Opt. Lett.18,317 (1993).

Payne, D. N.

Reekie, L.

Rowe, C. J.

Sabert, H.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), p. 538.

Simpson, J. R.

E. Desurvire, C. R. Giles, J. R. Simpson, IEEE J. Lightwave Technol. 7,2095 (1989).
[CrossRef]

Stamatovic, A. S.

I. V. Hertel, A. S. Stamatovic, IEEE J. Quantum Electron. QE-11, 210 (1975).
[CrossRef]

Tarbox, E. J.

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, IEEE J. Quantum Electron. 27,1004 (1991).
[CrossRef]

Ulrich, R.

Yun, S. H.

H. Y. Kim, B. K. Kim, S. H. Yun, B. Y. Kim, Opt. Lett. 20,1715 (1995).

Zyskind, J. L.

Electron. Lett. (1)

P. R. Morkel, G. J. Cowle, D. N. Payne, Electron. Lett. 26,632 (1990).
[CrossRef]

IEEE J. Lightwave Technol. (1)

E. Desurvire, C. R. Giles, J. R. Simpson, IEEE J. Lightwave Technol. 7,2095 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

W. L. Barnes, R. I. Laming, E. J. Tarbox, P. R. Morkel, IEEE J. Quantum Electron. 27,1004 (1991).
[CrossRef]

I. V. Hertel, A. S. Stamatovic, IEEE J. Quantum Electron. QE-11, 210 (1975).
[CrossRef]

Opt. Lett. (8)

Other (1)

A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), p. 538.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Two fiber laser cavity configurations with a gain medium and a saturable absorber. (b) Experimental setup: DM’s, dichroic mirrors; WDM, wavelength-division multiplexer. Erbium-doped fibers were used as the gain medium and the saturable absorber.

Fig. 2
Fig. 2

Output from the scanning fiber ring resonator, indicating the mode spectrum of Setup A: (a) two-mode operation at the pump power of 49 mW, (b) three-mode operation at the pump power of 58 mW. The FSR of the ring resonator was ~100 MHz.

Fig. 3
Fig. 3

Output from the scanning fiber ring resonator, indicating the mode spectrum of Setup B: (a) two-mode operation at the pump power of 40 mW, (b) three-mode operation at the pump power of 45 mW.

Fig. 4
Fig. 4

Laser output intensity versus launched pump power for Setup A.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d E ± m d z = ± ρ σ a Γ s [ q ( z ) η 1 ] 2 A 2 B 2 × ( E ± m A A 2 B 2 2 E m C ± m ) ,

Metrics