Abstract

We study a new type of optical lattice in which the localized atoms experience a much reduced optical pumping and fluorescence rate. An optical standing wave is tuned to the blue of the F = 2 → F = 2 transition of the 87Rb D2 line and induces periodic optical potentials by coupling the F = 2 ground state to both the F = 2 and F = 3 excited states. A Sisyphus mechanism efficiently cools the atoms into the lattice sites. We adiabatically release the atoms from the optical lattice and measure their momentum distribution with a resolution of one third of a single photon recoil. This allows us to determine the population of the two lowest energy bands in the optical lattice (44% and 20%).

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription