Abstract

Resolution in potential three-photon fluorescence scanning microscopy is discussed in terms of the three-dimensional optical transfer function. Images of layers and sharp edges are presented for a comparison of the resolution with that in two-photon fluorescence microscopic imaging. For the same fluorescence wavelength the resolution is almost the same in both cases. However, for a given illumination wavelength the resolution for imaging a thick object in the case of three-photon fluorescence imaging can be improved by as much as 40–50% relative to that in two-photon imaging.

© 1996 Optical Society of America

Full Article  |  PDF Article

Corrections

Min Gu, "Resolution in three-photon fluorescence scanning microscopy: errata," Opt. Lett. 21, 1414-1414 (1996)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-21-17-1414

References

  • View by:
  • |
  • |
  • |

  1. C. J. R. Sheppard, Scanning optical microscopy,” in Advances in Optical and Electron Scanning Microscopy, R. Barer, V. E. Cosselett, eds. (Academic, London, 1987), Vol. 10, pp. 1–98.
  2. W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  3. G. S. He, J. D. Bhawalker, P. N. Prasad, B. A. Reinhardt, Opt. Lett. 20, 1524 (1995).
    [CrossRef] [PubMed]
  4. P. C. Cheng, Department of Electrical and Computer Engineering, State University of New York at Buffalo, Buffalo, N.Y. 14260 (personal communication, 1995).
  5. S. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
    [CrossRef]
  6. Min Gu, C. J. R. Sheppard, J. Microsc. 177, 128 (1995).
    [CrossRef]
  7. B. R. Fredien, J. Opt. Soc. Am. 57, 56 (1967).
    [CrossRef]
  8. Min Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996), p. 151.
    [CrossRef]

1996 (1)

S. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

1995 (2)

1990 (1)

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1967 (1)

Bahlmann, K.

S. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

Bhawalker, J. D.

Cheng, P. C.

P. C. Cheng, Department of Electrical and Computer Engineering, State University of New York at Buffalo, Buffalo, N.Y. 14260 (personal communication, 1995).

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Fredien, B. R.

Gryczynski, I.

S. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

Gu, Min

Min Gu, C. J. R. Sheppard, J. Microsc. 177, 128 (1995).
[CrossRef]

Min Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996), p. 151.
[CrossRef]

He, G. S.

Hell, S.

S. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

Lakowicz, J. R.

S. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

Malak, H.

S. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

Prasad, P. N.

Reinhardt, B. A.

Schrader, M.

S. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

Sheppard, C. J. R.

Min Gu, C. J. R. Sheppard, J. Microsc. 177, 128 (1995).
[CrossRef]

C. J. R. Sheppard, Scanning optical microscopy,” in Advances in Optical and Electron Scanning Microscopy, R. Barer, V. E. Cosselett, eds. (Academic, London, 1987), Vol. 10, pp. 1–98.

Soini, A.

S. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

S. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

J. Microsc. (1)

Min Gu, C. J. R. Sheppard, J. Microsc. 177, 128 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Science (1)

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other (3)

C. J. R. Sheppard, Scanning optical microscopy,” in Advances in Optical and Electron Scanning Microscopy, R. Barer, V. E. Cosselett, eds. (Academic, London, 1987), Vol. 10, pp. 1–98.

P. C. Cheng, Department of Electrical and Computer Engineering, State University of New York at Buffalo, Buffalo, N.Y. 14260 (personal communication, 1995).

Min Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996), p. 151.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

3-D OTF for 3-p fluorescence scanning imaging when a large detector is used.

Fig. 2
Fig. 2

Optical transfer functions: (a) the transverse cross section of the 3-D OTF and the two-dimensional (2-D) in-focus OTF, (b) the axial cross section of the 3-D OTF and the one-dimensional (1-D) on-axis OTF. The dashed curves correspond to 2-p fluorescence imaging, and the solid curves to 3-p fluorescence imaging. In both cases the fluorescence wavelength is the same.

Fig. 3
Fig. 3

Calculated images: (a) thick and thin sharp edges, (b) thick and thin layers. The other conditions are the same as those in Fig. 2.

Tables (1)

Tables Icon

Table 1 Comparison of Resolution in 2-p and 3-p Fluorescence Microscopy

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

h i ( v , u ) = | I 1 ( ν / 3 , u / 3 ) | 3 I 2 ( ν , u ) 3 D ,
I 1 ( ν , u ) = | 0 1 2 J 0 ( ν ρ ) exp ( i u / 2 ) ρ d ρ | 2 .
u = ( 8 π / λ f ) z sin 2 ( α o / 2 ) ,
ν = ( 2 π / λ f ) r sin α o ,
C ( l , s ) = F [ I 1 ( ν / 3 , u / 3 ) ] F [ I 1 ( ν / 3 , u / 3 ) ] F [ I 1 ( ν / 3 , u / 3 ) ] ,
F [ I 1 ( u / 3 , ν / 3 ) ] = 2 3 l Re { [ 1 ( 3 l 2 + | s | l ) 2 ] 1 / 2 } .
C 1 ( s ) = { 1 ( 360 s 2 6480 s 4 + 12960 s 5 ) / 11 0 | s | < 1 / 6 17 / 22 + ( 75 s 1260 s 2 + 5400 s 3 9720 s 4 + 6480 s 5 ) / 11 1 / 6 | s | < 1 / 3 . 81 ( 1 2 s ) 5 / 22 1 / 3 | s | 1 / 2

Metrics