Abstract

We have developed a new scheme of Fourier-transform spectroscopy in the mid and the far infrared. The method relies on an interferometer in the visible or the near infrared, providing a sequence of two femtosecond pulses, which in turn generate a sequence of infrared pulses. The geometrical properties of the different diffracted infrared waves are used to isolate the relevant signal. An experimental demonstration is shown in the mid infrared by use of optical rectification of near-infrared 15-fs pulses.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Yang, P. L. Richards, Y. R. Shen, Appl. Phys. Lett. 19, 320 (1971).
    [CrossRef]
  2. P. R. Smith, D. H. Auston, M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
    [CrossRef]
  3. Ch. Fattinger, D. Grischkowsky, Appl. Phys. Lett. 54, 490 (1989).
    [CrossRef]
  4. D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, Opt. Lett. 18, 290 (1993).
    [CrossRef] [PubMed]
  5. A. Bonvalet, M. Joffre, J.-L. Martin, A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
    [CrossRef]
  6. P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986), p. 369.
  7. B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, P. H. Bucksbaum, Appl. Phys. Lett. 59, 893 (1991).
    [CrossRef]
  8. S. E. Ralph, D. Grischkowsky, Appl. Phys. Lett. 60, 1070 (1992).
    [CrossRef]
  9. M. Joffre, J. O. White, D. Hulin, A. Migus, E. Toussaere, R. Hierle, S. Gauvin, J. Zyss, Nonlin. Opt. 11, 5 (1995).
  10. J.-C. Diels, J. J. Fontaine, I. C. McMichael, F. Simoni, Appl. Opt. 24, 1270 (1985).
    [CrossRef] [PubMed]
  11. K. Naganuma, K. Mogi, H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
    [CrossRef]

1995 (2)

A. Bonvalet, M. Joffre, J.-L. Martin, A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

M. Joffre, J. O. White, D. Hulin, A. Migus, E. Toussaere, R. Hierle, S. Gauvin, J. Zyss, Nonlin. Opt. 11, 5 (1995).

1993 (1)

1992 (1)

S. E. Ralph, D. Grischkowsky, Appl. Phys. Lett. 60, 1070 (1992).
[CrossRef]

1991 (1)

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, P. H. Bucksbaum, Appl. Phys. Lett. 59, 893 (1991).
[CrossRef]

1989 (2)

Ch. Fattinger, D. Grischkowsky, Appl. Phys. Lett. 54, 490 (1989).
[CrossRef]

K. Naganuma, K. Mogi, H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

1988 (1)

P. R. Smith, D. H. Auston, M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

1985 (1)

1971 (1)

K. H. Yang, P. L. Richards, Y. R. Shen, Appl. Phys. Lett. 19, 320 (1971).
[CrossRef]

Auston, D. H.

P. R. Smith, D. H. Auston, M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

Bonvalet, A.

A. Bonvalet, M. Joffre, J.-L. Martin, A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

Bucksbaum, P. H.

D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, Opt. Lett. 18, 290 (1993).
[CrossRef] [PubMed]

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, P. H. Bucksbaum, Appl. Phys. Lett. 59, 893 (1991).
[CrossRef]

de Haseth, J. A.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986), p. 369.

Diels, J.-C.

Dykaar, D. R.

D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, Opt. Lett. 18, 290 (1993).
[CrossRef] [PubMed]

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, P. H. Bucksbaum, Appl. Phys. Lett. 59, 893 (1991).
[CrossRef]

Fattinger, Ch.

Ch. Fattinger, D. Grischkowsky, Appl. Phys. Lett. 54, 490 (1989).
[CrossRef]

Federici, J. F.

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, P. H. Bucksbaum, Appl. Phys. Lett. 59, 893 (1991).
[CrossRef]

Fontaine, J. J.

Gauvin, S.

M. Joffre, J. O. White, D. Hulin, A. Migus, E. Toussaere, R. Hierle, S. Gauvin, J. Zyss, Nonlin. Opt. 11, 5 (1995).

Greene, B. I.

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, P. H. Bucksbaum, Appl. Phys. Lett. 59, 893 (1991).
[CrossRef]

Griffiths, P. R.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986), p. 369.

Grischkowsky, D.

S. E. Ralph, D. Grischkowsky, Appl. Phys. Lett. 60, 1070 (1992).
[CrossRef]

Ch. Fattinger, D. Grischkowsky, Appl. Phys. Lett. 54, 490 (1989).
[CrossRef]

Hierle, R.

M. Joffre, J. O. White, D. Hulin, A. Migus, E. Toussaere, R. Hierle, S. Gauvin, J. Zyss, Nonlin. Opt. 11, 5 (1995).

Hulin, D.

M. Joffre, J. O. White, D. Hulin, A. Migus, E. Toussaere, R. Hierle, S. Gauvin, J. Zyss, Nonlin. Opt. 11, 5 (1995).

Joffre, M.

M. Joffre, J. O. White, D. Hulin, A. Migus, E. Toussaere, R. Hierle, S. Gauvin, J. Zyss, Nonlin. Opt. 11, 5 (1995).

A. Bonvalet, M. Joffre, J.-L. Martin, A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

Jones, R. R.

D. You, R. R. Jones, P. H. Bucksbaum, D. R. Dykaar, Opt. Lett. 18, 290 (1993).
[CrossRef] [PubMed]

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, P. H. Bucksbaum, Appl. Phys. Lett. 59, 893 (1991).
[CrossRef]

Martin, J.-L.

A. Bonvalet, M. Joffre, J.-L. Martin, A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

McMichael, I. C.

Migus, A.

M. Joffre, J. O. White, D. Hulin, A. Migus, E. Toussaere, R. Hierle, S. Gauvin, J. Zyss, Nonlin. Opt. 11, 5 (1995).

A. Bonvalet, M. Joffre, J.-L. Martin, A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

Mogi, K.

K. Naganuma, K. Mogi, H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Naganuma, K.

K. Naganuma, K. Mogi, H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Nuss, M. C.

P. R. Smith, D. H. Auston, M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

Ralph, S. E.

S. E. Ralph, D. Grischkowsky, Appl. Phys. Lett. 60, 1070 (1992).
[CrossRef]

Richards, P. L.

K. H. Yang, P. L. Richards, Y. R. Shen, Appl. Phys. Lett. 19, 320 (1971).
[CrossRef]

Shen, Y. R.

K. H. Yang, P. L. Richards, Y. R. Shen, Appl. Phys. Lett. 19, 320 (1971).
[CrossRef]

Simoni, F.

Smith, P. R.

P. R. Smith, D. H. Auston, M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

Toussaere, E.

M. Joffre, J. O. White, D. Hulin, A. Migus, E. Toussaere, R. Hierle, S. Gauvin, J. Zyss, Nonlin. Opt. 11, 5 (1995).

White, J. O.

M. Joffre, J. O. White, D. Hulin, A. Migus, E. Toussaere, R. Hierle, S. Gauvin, J. Zyss, Nonlin. Opt. 11, 5 (1995).

Yamada, H.

K. Naganuma, K. Mogi, H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Yang, K. H.

K. H. Yang, P. L. Richards, Y. R. Shen, Appl. Phys. Lett. 19, 320 (1971).
[CrossRef]

You, D.

Zyss, J.

M. Joffre, J. O. White, D. Hulin, A. Migus, E. Toussaere, R. Hierle, S. Gauvin, J. Zyss, Nonlin. Opt. 11, 5 (1995).

Appl. Opt. (1)

Appl. Phys. Lett. (5)

K. H. Yang, P. L. Richards, Y. R. Shen, Appl. Phys. Lett. 19, 320 (1971).
[CrossRef]

Ch. Fattinger, D. Grischkowsky, Appl. Phys. Lett. 54, 490 (1989).
[CrossRef]

A. Bonvalet, M. Joffre, J.-L. Martin, A. Migus, Appl. Phys. Lett. 67, 2907 (1995).
[CrossRef]

B. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, P. H. Bucksbaum, Appl. Phys. Lett. 59, 893 (1991).
[CrossRef]

S. E. Ralph, D. Grischkowsky, Appl. Phys. Lett. 60, 1070 (1992).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. R. Smith, D. H. Auston, M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).
[CrossRef]

K. Naganuma, K. Mogi, H. Yamada, IEEE J. Quantum Electron. 25, 1225 (1989).
[CrossRef]

Nonlin. Opt. (1)

M. Joffre, J. O. White, D. Hulin, A. Migus, E. Toussaere, R. Hierle, S. Gauvin, J. Zyss, Nonlin. Opt. 11, 5 (1995).

Opt. Lett. (1)

Other (1)

P. R. Griffiths, J. A. de Haseth, Fourier Transform Infrared Spectrometry, Vol. 83 of Chemical Analysis (Wiley, New York, 1986), p. 369.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Normalized autocorrelation trace obtained with a 15-fs 800-nm pulse delivered by a 100-MHz Ti:sapphire oscillator. The setup is shown in the inset. The infrared generator is a [ 1 1 ¯ 0]-grown GaAs substrate, and the detector is HgCdTe. (b) Magnitude of the autocorrelation Fourier transform.

Fig. 2
Fig. 2

Femtosecond FTIR spectrometer setup: BS, beam splitter; TS, translation stage; SM, off-axis spherical mirror; SL, slit; PM’s, gold-coated parabolic mirrors. At left is an enlargement of the beam geometry at the infrared generator. The diffraction-limited divergence of the crossed emission is not shown for clarity.

Fig. 3
Fig. 3

(a) Autocorrelation measured with noncollinear geometry. (b) Fourier transform of the autocorrelation. (c) Blowup of the Fourier transform in the infrared spectral region, plotted as a function of wavelength

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E IR ( t ) = 1 4 π 2 Ξ 2 ( ω 1 , ω 2 ) E ( ω 1 ) E * ( ω 2 ) × exp [ i ( ω 1 ω 2 ) t ] d ω 1 d ω 2 ,
E tot ( t ) = E IR ( t ) + E IR ( t τ ) + E X , τ ( t ) .
λ 0 2 π w 0 < tan θ < 2 λ IR π w 0 ,

Metrics