Abstract

We report the behavior of Autler–Townes splitting and production of a four-wave mixing (FWM) field in rubidium in the context of laser-induced transparency. Gain saturation of the FWM and simultaneous suppression of Autler–Townes splitting above a critical concentration are interpreted in terms of the odd-photon destructive interference effect. The results demonstrate that, when multimode lasers are used, odd-photon destructive interference significantly limits the high-efficiency and high-intensity FWM generation promised by early studies of laser-induced transparency.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription