Abstract

A fiber-optical low-coherence reflectometer has been used to probe a multicore fiber locally at a wavelength of 1.3 μm. This technique allows one to determine the group index of refraction of the modes in the multicore fiber with high accuracy. Light propagation that is due to noncoherent coupling of energy from one fiber core to adjacent cores through cladding modes can be distinguished quantitatively from light propagating in coherently coupled modes. Intercore coupling constants in the range of 0.6–2 mm−1 have been evaluated for the coupled modes.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972).
  2. N. S. Kapany, J. Eyer, R. E. Keim, J. Opt. Soc. Am. 47, 423–427 (1957).
    [CrossRef]
  3. R. P. Novak, H. H. Gilgen, P. Beaud, W. Hodel, in Optical Fiber Measurements, Natl. Inst. Stand. Technol. Spec. Publ. 792, 35–38 (1990).
  4. B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, IEEE J. Quantum Electron. 30, 703–712 (1994).
    [CrossRef]
  5. Ch. Zimmer, H. H. Gilgen, in Sixth European Conference on Integrated Optics (ECIO) (Centre Suisse d’Electronique et de Microtechnique, Neuchtel, Switzerland, 1993), pp. 14–16.
  6. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 11, p. 208.
    [CrossRef]
  7. L. O. Wilson, F. K. Reinhart, Bell Syst. Tech. J. 53, 717–739 (1973).
  8. P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe′, Ch. Zimmer, H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565–567 (1993).
    [CrossRef]

1994 (1)

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

1993 (1)

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe′, Ch. Zimmer, H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565–567 (1993).
[CrossRef]

1990 (1)

R. P. Novak, H. H. Gilgen, P. Beaud, W. Hodel, in Optical Fiber Measurements, Natl. Inst. Stand. Technol. Spec. Publ. 792, 35–38 (1990).

1973 (1)

L. O. Wilson, F. K. Reinhart, Bell Syst. Tech. J. 53, 717–739 (1973).

1957 (1)

Beaud, P.

R. P. Novak, H. H. Gilgen, P. Beaud, W. Hodel, in Optical Fiber Measurements, Natl. Inst. Stand. Technol. Spec. Publ. 792, 35–38 (1990).

Epler, J. E.

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

Eyer, J.

Fonjallaz, P. Y.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe′, Ch. Zimmer, H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565–567 (1993).
[CrossRef]

Gilgen, H. H.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe′, Ch. Zimmer, H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565–567 (1993).
[CrossRef]

R. P. Novak, H. H. Gilgen, P. Beaud, W. Hodel, in Optical Fiber Measurements, Natl. Inst. Stand. Technol. Spec. Publ. 792, 35–38 (1990).

Ch. Zimmer, H. H. Gilgen, in Sixth European Conference on Integrated Optics (ECIO) (Centre Suisse d’Electronique et de Microtechnique, Neuchtel, Switzerland, 1993), pp. 14–16.

Graf, B.

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

Hodel, W.

R. P. Novak, H. H. Gilgen, P. Beaud, W. Hodel, in Optical Fiber Measurements, Natl. Inst. Stand. Technol. Spec. Publ. 792, 35–38 (1990).

Kapany, N. S.

Keim, R. E.

Lambelet, P.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe′, Ch. Zimmer, H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565–567 (1993).
[CrossRef]

Lehmann, H. W.

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

Limberger, H. G.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe′, Ch. Zimmer, H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565–567 (1993).
[CrossRef]

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 11, p. 208.
[CrossRef]

Marcuse, D.

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972).

Novak, R. P.

R. P. Novak, H. H. Gilgen, P. Beaud, W. Hodel, in Optical Fiber Measurements, Natl. Inst. Stand. Technol. Spec. Publ. 792, 35–38 (1990).

Patterson, B. D.

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

Reinhart, F. K.

L. O. Wilson, F. K. Reinhart, Bell Syst. Tech. J. 53, 717–739 (1973).

Salathe', R. P.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe′, Ch. Zimmer, H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565–567 (1993).
[CrossRef]

Sigg, H. C.

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 11, p. 208.
[CrossRef]

Wilson, L. O.

L. O. Wilson, F. K. Reinhart, Bell Syst. Tech. J. 53, 717–739 (1973).

Zimmer, Ch.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe′, Ch. Zimmer, H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565–567 (1993).
[CrossRef]

Ch. Zimmer, H. H. Gilgen, in Sixth European Conference on Integrated Optics (ECIO) (Centre Suisse d’Electronique et de Microtechnique, Neuchtel, Switzerland, 1993), pp. 14–16.

Bell Syst. Tech. J. (1)

L. O. Wilson, F. K. Reinhart, Bell Syst. Tech. J. 53, 717–739 (1973).

IEEE J. Quantum Electron. (1)

B. D. Patterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg, IEEE J. Quantum Electron. 30, 703–712 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe′, Ch. Zimmer, H. H. Gilgen, IEEE Photon. Technol. Lett. 5, 565–567 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

Natl. Inst. Stand. Technol. Spec. Publ. (1)

R. P. Novak, H. H. Gilgen, P. Beaud, W. Hodel, in Optical Fiber Measurements, Natl. Inst. Stand. Technol. Spec. Publ. 792, 35–38 (1990).

Other (3)

Ch. Zimmer, H. H. Gilgen, in Sixth European Conference on Integrated Optics (ECIO) (Centre Suisse d’Electronique et de Microtechnique, Neuchtel, Switzerland, 1993), pp. 14–16.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 11, p. 208.
[CrossRef]

D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental arrangement: MCF, multicore fiber; PD, photodiode; MOD, piezoelectric modulator; REF, reference arm of the interferometer; CC, corner-cube reflector; M, metallic mirror. The inset shows schematically the excitation of a single core at the entrance face of the MCF.

Fig. 2
Fig. 2

Reflected intensity on a logarithmic scale as a function of optical distance relative to the exit of the reference fiber (bottom) and the group index of refraction ng (top). The inset shows the near-field intensity distribution at the MC fiber exit.

Fig. 3
Fig. 3

Reflected intensity on a logarithmic scale as a function of the group index of refraction ng. The near-field distribution at the MC fiber exit is shown in the inset.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

v g = d ω d k ( d β d k ) 1 = c n [ n λ ( n / λ ) ] β k 1 1 2 Δ ( 1 η ) = c n g .
n g N eff = n 2 ( 1 λ n λ n ) [ 1 2 Δ ( 1 η ) ] const .

Metrics