Abstract

A rate-equation analysis has been used to investigate the feasibility of exciting new UV laser transitions in Cu II (3d94p−3d94s) by use of a pulsed Cu−Ne discharge. The model predicts average output powers in excess of 100 mW at 10 kHz from the combined output at 201.5 and 211.2 nm.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Isaev, M. A. Kazaryan, G. G. Petrash, Sov. J. Quantum Electron. 3, 358 (1974).
    [CrossRef]
  2. B. J. Tarte, “Kinetic and optical processes in Sr+ recombination lasers,” Ph.D. dissertation (Macquarie University, Sydney, Australia, 1991).
  3. A. C. J. Glover, E. K. Illy, J. A. Piper, IEEE J. Sel. Topics Quantum Electron. 1, 830 (1995).
    [CrossRef]
  4. R. J. Carman, D. J. W. Brown, J. A. Piper, IEEE J. Quantum Electron. 30, 1876 (1994).
    [CrossRef]
  5. A. Kono, S. Hattori, J. Opt. Soc. Am. 72, 601 (1982).
    [CrossRef]
  6. D. C. Griffin, M. S. Pindzola, J. Phys. B 28, 4347 (1995).
    [CrossRef]
  7. L. J. Curtis, B. Engman, I. Martinson, Phys. Scr. 13, 109 (1976).
    [CrossRef]
  8. C. H. Corliss, W. R. Bozman, Nat. Bur. Stand. (U.S.) Monogr. 53 (National Bureau of Standards, Washington, D.C., 1962).
  9. C. Froese Fischer, R. Glass, Phys. Scr. 21, 525 (1980).
    [CrossRef]
  10. R. J. Carman, IEEE J. Quantum Electron. 26, 1588 (1990).
    [CrossRef]
  11. D. S. Knowles, D. J. W. Brown, Opt. Lett. 20, 569 (1995).
    [CrossRef] [PubMed]
  12. D. C. Griffin, Department of Physics, Rollins College, Winter Park, Fla.32789-4499 (personal communication).

1995

A. C. J. Glover, E. K. Illy, J. A. Piper, IEEE J. Sel. Topics Quantum Electron. 1, 830 (1995).
[CrossRef]

D. C. Griffin, M. S. Pindzola, J. Phys. B 28, 4347 (1995).
[CrossRef]

D. S. Knowles, D. J. W. Brown, Opt. Lett. 20, 569 (1995).
[CrossRef] [PubMed]

1994

R. J. Carman, D. J. W. Brown, J. A. Piper, IEEE J. Quantum Electron. 30, 1876 (1994).
[CrossRef]

1990

R. J. Carman, IEEE J. Quantum Electron. 26, 1588 (1990).
[CrossRef]

1982

1980

C. Froese Fischer, R. Glass, Phys. Scr. 21, 525 (1980).
[CrossRef]

1976

L. J. Curtis, B. Engman, I. Martinson, Phys. Scr. 13, 109 (1976).
[CrossRef]

1974

A. A. Isaev, M. A. Kazaryan, G. G. Petrash, Sov. J. Quantum Electron. 3, 358 (1974).
[CrossRef]

Bozman, W. R.

C. H. Corliss, W. R. Bozman, Nat. Bur. Stand. (U.S.) Monogr. 53 (National Bureau of Standards, Washington, D.C., 1962).

Brown, D. J. W.

D. S. Knowles, D. J. W. Brown, Opt. Lett. 20, 569 (1995).
[CrossRef] [PubMed]

R. J. Carman, D. J. W. Brown, J. A. Piper, IEEE J. Quantum Electron. 30, 1876 (1994).
[CrossRef]

Carman, R. J.

R. J. Carman, D. J. W. Brown, J. A. Piper, IEEE J. Quantum Electron. 30, 1876 (1994).
[CrossRef]

R. J. Carman, IEEE J. Quantum Electron. 26, 1588 (1990).
[CrossRef]

Corliss, C. H.

C. H. Corliss, W. R. Bozman, Nat. Bur. Stand. (U.S.) Monogr. 53 (National Bureau of Standards, Washington, D.C., 1962).

Curtis, L. J.

L. J. Curtis, B. Engman, I. Martinson, Phys. Scr. 13, 109 (1976).
[CrossRef]

Engman, B.

L. J. Curtis, B. Engman, I. Martinson, Phys. Scr. 13, 109 (1976).
[CrossRef]

Froese Fischer, C.

C. Froese Fischer, R. Glass, Phys. Scr. 21, 525 (1980).
[CrossRef]

Glass, R.

C. Froese Fischer, R. Glass, Phys. Scr. 21, 525 (1980).
[CrossRef]

Glover, A. C. J.

A. C. J. Glover, E. K. Illy, J. A. Piper, IEEE J. Sel. Topics Quantum Electron. 1, 830 (1995).
[CrossRef]

Griffin, D. C.

D. C. Griffin, M. S. Pindzola, J. Phys. B 28, 4347 (1995).
[CrossRef]

D. C. Griffin, Department of Physics, Rollins College, Winter Park, Fla.32789-4499 (personal communication).

Hattori, S.

Illy, E. K.

A. C. J. Glover, E. K. Illy, J. A. Piper, IEEE J. Sel. Topics Quantum Electron. 1, 830 (1995).
[CrossRef]

Isaev, A. A.

A. A. Isaev, M. A. Kazaryan, G. G. Petrash, Sov. J. Quantum Electron. 3, 358 (1974).
[CrossRef]

Kazaryan, M. A.

A. A. Isaev, M. A. Kazaryan, G. G. Petrash, Sov. J. Quantum Electron. 3, 358 (1974).
[CrossRef]

Knowles, D. S.

Kono, A.

Martinson, I.

L. J. Curtis, B. Engman, I. Martinson, Phys. Scr. 13, 109 (1976).
[CrossRef]

Petrash, G. G.

A. A. Isaev, M. A. Kazaryan, G. G. Petrash, Sov. J. Quantum Electron. 3, 358 (1974).
[CrossRef]

Pindzola, M. S.

D. C. Griffin, M. S. Pindzola, J. Phys. B 28, 4347 (1995).
[CrossRef]

Piper, J. A.

A. C. J. Glover, E. K. Illy, J. A. Piper, IEEE J. Sel. Topics Quantum Electron. 1, 830 (1995).
[CrossRef]

R. J. Carman, D. J. W. Brown, J. A. Piper, IEEE J. Quantum Electron. 30, 1876 (1994).
[CrossRef]

Tarte, B. J.

B. J. Tarte, “Kinetic and optical processes in Sr+ recombination lasers,” Ph.D. dissertation (Macquarie University, Sydney, Australia, 1991).

IEEE J. Sel. Topics Quantum Electron.

A. C. J. Glover, E. K. Illy, J. A. Piper, IEEE J. Sel. Topics Quantum Electron. 1, 830 (1995).
[CrossRef]

IEEE J. Quantum Electron.

R. J. Carman, D. J. W. Brown, J. A. Piper, IEEE J. Quantum Electron. 30, 1876 (1994).
[CrossRef]

R. J. Carman, IEEE J. Quantum Electron. 26, 1588 (1990).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. B

D. C. Griffin, M. S. Pindzola, J. Phys. B 28, 4347 (1995).
[CrossRef]

Opt. Lett.

Phys. Scr.

C. Froese Fischer, R. Glass, Phys. Scr. 21, 525 (1980).
[CrossRef]

L. J. Curtis, B. Engman, I. Martinson, Phys. Scr. 13, 109 (1976).
[CrossRef]

Sov. J. Quantum Electron.

A. A. Isaev, M. A. Kazaryan, G. G. Petrash, Sov. J. Quantum Electron. 3, 358 (1974).
[CrossRef]

Other

B. J. Tarte, “Kinetic and optical processes in Sr+ recombination lasers,” Ph.D. dissertation (Macquarie University, Sydney, Australia, 1991).

D. C. Griffin, Department of Physics, Rollins College, Winter Park, Fla.32789-4499 (personal communication).

C. H. Corliss, W. R. Bozman, Nat. Bur. Stand. (U.S.) Monogr. 53 (National Bureau of Standards, Washington, D.C., 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Partial energy-level diagram for Cu II. The solid lines represent electron collisions; the dashed lines denote radiative decay. Note: 0 eV = Cu+ ground state.

Fig. 2
Fig. 2

Excitation and ionization rate coefficients for electron collisions in Cu II. The dashed curves are rates calculated from emission-line oscillator strengths.

Fig. 3
Fig. 3

Temporal evolution of the axial population densities of the 3d94s and 3d94p levels and associated small-signal gain coefficients for UV lines (wavelengths in nanometers) originating from the 4p lP1 level. The populations 3d94s 3D2 and 3d94s 3D3 are lumped together. Wall temperature, Tw = 1740 K; pulse-repetition frequency 10 kHz; peak discharge current, I2 = 302 A; peak current rise time, dI2/dt = 1.3 × 1010 A s−1.

Fig. 4
Fig. 4

Output power on the visible and UV laser lines and peak electron temperature as a function of the wall temperature Tw. The output power on the UV lines is calculated assuming a flat/flat optical resonator and antireflection coated optics.

Tables (2)

Tables Icon

Table 1 Radiative Decay Channels of the 3d94p 1P1 Resonance Level in Cu II

Tables Icon

Table 2 Plasma Tube and Circuit Parameters

Metrics