Abstract

In a twin-core optical fiber a propagating light pulse periodically transfers power between its two cores. Experiments by Tjugiarto et al. [Opt. Lett. 17, 1058 (1992)] have demonstrated that this coupling length is considerably reduced when the fiber is also spun. A coupled-mode analysis reveals a pitch resonance that couples a cladding mode with the circularly polarized core mode whose handedness matches that of the helical twist of the cores. This resonance mechanism explains the observation of enhanced coupling and cladding-mode cross coupling.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kitayama, Y. Ishida, J. Opt. Soc. Am. A 2, 90 (1985).
    [CrossRef]
  2. G. D. Peng, T. Tjugiarto, P. L. Chu, Appl. Opt. 30, 632 (1991).
    [CrossRef] [PubMed]
  3. S. R. Friberg, A. M. Weiner, Y. Silverberg, B. G. Sfez, P. W. Smith, Opt. Lett. 13, 904 (1988).
    [CrossRef] [PubMed]
  4. G. Meltz, J. R. Dumphy, W. W. Morey, E. Snitzer, Appl. Opt. 22, 464 (1983).
    [CrossRef] [PubMed]
  5. T. Tjugiarto, P. L. Chu, G. D. Peng, Opt. Lett. 17, 1058 (1992).
    [CrossRef] [PubMed]
  6. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  7. S. Gasiorowics, Quantum Physics (Wiley, New York, 1974).

1992 (1)

1991 (1)

1988 (1)

1985 (1)

1983 (1)

Chu, P. L.

Dumphy, J. R.

Friberg, S. R.

Gasiorowics, S.

S. Gasiorowics, Quantum Physics (Wiley, New York, 1974).

Ishida, Y.

Kitayama, K.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).

Meltz, G.

Morey, W. W.

Peng, G. D.

Sfez, B. G.

Silverberg, Y.

Smith, P. W.

Snitzer, E.

Tjugiarto, T.

Weiner, A. M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic of spun twin-core fiber.

Fig. 2
Fig. 2

Effective coupling C(λ). Experimental data are shown as dots (data points) and asterisks (fit data).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

× × E k 2 n 2 ( x , y , z ) E = 0 ,
( · E ) = δ 2 ( f ) E + O ( δ 4 ) .
[ x ¯ y ¯ ] = [ cos α z sin α z sin α z cos α z ] [ x y ] = M [ x y ] ,
E ( x ¯ , y ¯ , z ) [ A ( x ¯ , y ¯ , z ) A 3 ( x ¯ , y ¯ , z ) ] exp ( i k z ) ,
2 i k [ z + α θ ] A + ¯ 2 A + δ 2 k 2 f ¯ ( x ¯ , y ¯ ) A = [ z + α θ ] 2 A 2 M 1 ¯ ( ¯ f ¯ · M A ) ,
A ~ n = 1 N [ a n ( z ) b n ( z ) ] U n ( x ¯ , y ¯ ) exp ( i 2 k β n z ) ,
¯ 2 U n + 2 i α k θ U n + [ δ 2 k 2 f ¯ β n 0 ] U n = 0 ,
exp ( i β ˜ z ) sin 2 α z ( i / 2 ) sgn ( α ) exp ( i Δ z ) ,
exp ( i β ˜ z ) cos 2 α z ( 1 / 2 ) exp ( i Δ z ) ,
2 i k 3 d d z [ P 1 + P 3 ] = [ C 11 + C 13 C 31 + C 33 ] [ P 1 + P 3 ] ,
2 i k 3 d P n ± / d z = C n n ± P n ± ,
β 1 β 2 ( β 1 0 β 2 0 ) [ 1 + O ( 1 / k 3 ) ] + F ( Δ ) / k 3 .
C ( λ ) ( b 0 / λ ) b 1 + b 2 λ + b F ( Δ ) λ 4 .

Metrics