Abstract

Soliton trains can be parametrically generated in fiber loops wherever an incoming soliton train interacts with a cw pump in the nonlinear loop. The phase-conjugated signal may either copy or multiply the incoming repetition rate, depending on whether the corresponding cavity harmonic is exactly matched or differs by an amount equal to an integer fraction of the longitudinal mode spacing. It is also shown that the phase relationship between adjacent solitons in the multiplicative conditions continuously evolves on propagation. This effect limits the range of potential application of multiplicative loops.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Smith, J. LucekElectron. Lett. 28, 1814 (1992).
    [CrossRef]
  2. E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, M. NakazawaElectron. Lett. 30, 1764 (1994).
    [CrossRef]
  3. L. E. Adams, E. S. Kintzer, J. G. FujimotoElectron. Lett. 30, 1696 (1994).
    [CrossRef]
  4. M. Margalit, M. Orenstein, G. EisensteinOpt. Lett. 20, 1791 (1995).
    [CrossRef] [PubMed]
  5. S. Bigo, E. DesurvireElectron. Lett. 31, 1855 (1995).
    [CrossRef]
  6. A. D. Ellis, K. Smith, D. M. PatrickElectron. Lett. 29, 1323 (1993).
    [CrossRef]
  7. S. Kawanishi, H. Takara, M. Saruwatari, T. KitohElectron. Lett. 29, 1714 (1993).
    [CrossRef]
  8. P. L. Chu, C. DesemElectron. Lett. 21, 1133 (1985).
    [CrossRef]
  9. Y. Kodama, S. WabnitzOpt. Lett. 19, 162 (1994).
    [CrossRef] [PubMed]

1995

1994

E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, M. NakazawaElectron. Lett. 30, 1764 (1994).
[CrossRef]

L. E. Adams, E. S. Kintzer, J. G. FujimotoElectron. Lett. 30, 1696 (1994).
[CrossRef]

Y. Kodama, S. WabnitzOpt. Lett. 19, 162 (1994).
[CrossRef] [PubMed]

1993

A. D. Ellis, K. Smith, D. M. PatrickElectron. Lett. 29, 1323 (1993).
[CrossRef]

S. Kawanishi, H. Takara, M. Saruwatari, T. KitohElectron. Lett. 29, 1714 (1993).
[CrossRef]

1992

K. Smith, J. LucekElectron. Lett. 28, 1814 (1992).
[CrossRef]

1985

P. L. Chu, C. DesemElectron. Lett. 21, 1133 (1985).
[CrossRef]

Adams, L. E.

L. E. Adams, E. S. Kintzer, J. G. FujimotoElectron. Lett. 30, 1696 (1994).
[CrossRef]

Bigo, S.

S. Bigo, E. DesurvireElectron. Lett. 31, 1855 (1995).
[CrossRef]

Chu, P. L.

P. L. Chu, C. DesemElectron. Lett. 21, 1133 (1985).
[CrossRef]

Desem, C.

P. L. Chu, C. DesemElectron. Lett. 21, 1133 (1985).
[CrossRef]

Desurvire, E.

S. Bigo, E. DesurvireElectron. Lett. 31, 1855 (1995).
[CrossRef]

Eisenstein, G.

Ellis, A. D.

A. D. Ellis, K. Smith, D. M. PatrickElectron. Lett. 29, 1323 (1993).
[CrossRef]

Fujimoto, J. G.

L. E. Adams, E. S. Kintzer, J. G. FujimotoElectron. Lett. 30, 1696 (1994).
[CrossRef]

Greer, E. J.

E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, M. NakazawaElectron. Lett. 30, 1764 (1994).
[CrossRef]

Kawanishi, S.

S. Kawanishi, H. Takara, M. Saruwatari, T. KitohElectron. Lett. 29, 1714 (1993).
[CrossRef]

Kimura, Y.

E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, M. NakazawaElectron. Lett. 30, 1764 (1994).
[CrossRef]

Kintzer, E. S.

L. E. Adams, E. S. Kintzer, J. G. FujimotoElectron. Lett. 30, 1696 (1994).
[CrossRef]

Kitoh, T.

S. Kawanishi, H. Takara, M. Saruwatari, T. KitohElectron. Lett. 29, 1714 (1993).
[CrossRef]

Kodama, Y.

Lucek, J.

K. Smith, J. LucekElectron. Lett. 28, 1814 (1992).
[CrossRef]

Margalit, M.

Nakazawa, M.

E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, M. NakazawaElectron. Lett. 30, 1764 (1994).
[CrossRef]

Orenstein, M.

Patrick, D. M.

A. D. Ellis, K. Smith, D. M. PatrickElectron. Lett. 29, 1323 (1993).
[CrossRef]

Saruwatari, M.

S. Kawanishi, H. Takara, M. Saruwatari, T. KitohElectron. Lett. 29, 1714 (1993).
[CrossRef]

Smith, K.

A. D. Ellis, K. Smith, D. M. PatrickElectron. Lett. 29, 1323 (1993).
[CrossRef]

K. Smith, J. LucekElectron. Lett. 28, 1814 (1992).
[CrossRef]

Suzuki, K.

E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, M. NakazawaElectron. Lett. 30, 1764 (1994).
[CrossRef]

Takara, H.

S. Kawanishi, H. Takara, M. Saruwatari, T. KitohElectron. Lett. 29, 1714 (1993).
[CrossRef]

Wabnitz, S.

Yoshida, E.

E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, M. NakazawaElectron. Lett. 30, 1764 (1994).
[CrossRef]

Electron. Lett.

K. Smith, J. LucekElectron. Lett. 28, 1814 (1992).
[CrossRef]

E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, M. NakazawaElectron. Lett. 30, 1764 (1994).
[CrossRef]

L. E. Adams, E. S. Kintzer, J. G. FujimotoElectron. Lett. 30, 1696 (1994).
[CrossRef]

S. Bigo, E. DesurvireElectron. Lett. 31, 1855 (1995).
[CrossRef]

A. D. Ellis, K. Smith, D. M. PatrickElectron. Lett. 29, 1323 (1993).
[CrossRef]

S. Kawanishi, H. Takara, M. Saruwatari, T. KitohElectron. Lett. 29, 1714 (1993).
[CrossRef]

P. L. Chu, C. DesemElectron. Lett. 21, 1133 (1985).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup describing the all-optical mode-locked fiber laser. A cw DFB is used as a parametric pump. An actively mode-locked EDFL provided the pulse train control signal at 7.5, or 15-GHz repetition rate. The parametric pump and the control signal are amplified by a Ti:sapphire-pumped erbium-doped fiber amplifier and injected into the loop. The wavelength conversion occurs in 10-km-long DSF with zero dispersion corresponding to the DFB wavelength. Time and spectral analyses were performed with an autocorrelator (AC) and an optical spectrum analyzer (OSA), respectively.

Fig. 2
Fig. 2

Spectral analysis of the three waves: signal at λs = 1550.3 nm, pump at λp = 1552.83 nm, and conjugated at λc = 1555.3 nm. The measurement in (a) was done at point A of Fig. 1, whereas that in (b) corresponds to point B of Fig. 1. Both cases refer to the open-loop configuration. The spectrum in (c) was measured at point B of Fig. 1 and represents the closed-loop configuration.

Fig. 3
Fig. 3

Autocorrelation traces and spectra of trains of solitons at 15-GHz repetition rate. In (a) both the EDFL and the parametric loop were operating at the same repetition rate, whereas in (b) the EDFL repetition rate was 7.5 GHz. The spectrum of the reconstructed train in (a) shows modulations with spacing equal to the repetition rate. The spectrum of the doubled-repetition-rate train is smooth because of the unequal amplitude and phase evolution of the solitons in the train. SH, second harmonic.

Fig. 4
Fig. 4

Multiplication of the repetition rate. The actively mode-locked EDFL was operating at 15 GHz. The EDFL repetition rate was finely adjusted by an amount equal to one third of the mode spacing in the parametric loop. The resulting repetition rate was 45 GHz, and, as shown in Fig. 3(b), the optical spectrum is smooth. SH, second harmonic.

Metrics