Abstract

We demonstrate experimentally that internal reflections of a signal and (or) a pump beam allow one to increase beam amplification by two-beam coupling in a long Bi12TiO20 crystal. When fanning is negligible, we achieve an enhancement of the amplification by adjustment of the spatial period of the transformation of the beam’s polarization states with periodic reflections of the beams on the crystal boundaries. For the case of strong fanning the fanned beam is redirected by the reflections on the crystal surface, which allows one to use it as a pump beam, thus increasing net amplification gain.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ito, K. Kitayama, K. Kitayama, O. NakamoAppl. Phys. Lett. 60, 793 (1992).
    [CrossRef]
  2. L. HesselinkOpt. Photon. News 4(2), 9 (1993).
    [CrossRef]
  3. P. BrodyAppl. Phys. Lett. 53, 262 (1988).
    [CrossRef]
  4. G. J. Dunning, D. M. Pepper, M. B. KleinOpt. Lett. 15, 99 (1990).
    [CrossRef] [PubMed]
  5. M. P. Petrov, S. I. Stepanov, A. V. KhomenkoPhotorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).

1993

L. HesselinkOpt. Photon. News 4(2), 9 (1993).
[CrossRef]

1992

F. Ito, K. Kitayama, K. Kitayama, O. NakamoAppl. Phys. Lett. 60, 793 (1992).
[CrossRef]

1990

1988

P. BrodyAppl. Phys. Lett. 53, 262 (1988).
[CrossRef]

Brody, P.

P. BrodyAppl. Phys. Lett. 53, 262 (1988).
[CrossRef]

Dunning, G. J.

Hesselink, L.

L. HesselinkOpt. Photon. News 4(2), 9 (1993).
[CrossRef]

Ito, F.

F. Ito, K. Kitayama, K. Kitayama, O. NakamoAppl. Phys. Lett. 60, 793 (1992).
[CrossRef]

Khomenko, A. V.

M. P. Petrov, S. I. Stepanov, A. V. KhomenkoPhotorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).

Kitayama, K.

F. Ito, K. Kitayama, K. Kitayama, O. NakamoAppl. Phys. Lett. 60, 793 (1992).
[CrossRef]

F. Ito, K. Kitayama, K. Kitayama, O. NakamoAppl. Phys. Lett. 60, 793 (1992).
[CrossRef]

Klein, M. B.

Nakamo, O.

F. Ito, K. Kitayama, K. Kitayama, O. NakamoAppl. Phys. Lett. 60, 793 (1992).
[CrossRef]

Pepper, D. M.

Petrov, M. P.

M. P. Petrov, S. I. Stepanov, A. V. KhomenkoPhotorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).

Stepanov, S. I.

M. P. Petrov, S. I. Stepanov, A. V. KhomenkoPhotorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).

Appl. Phys. Lett.

F. Ito, K. Kitayama, K. Kitayama, O. NakamoAppl. Phys. Lett. 60, 793 (1992).
[CrossRef]

P. BrodyAppl. Phys. Lett. 53, 262 (1988).
[CrossRef]

Opt. Lett.

Opt. Photon. News

L. HesselinkOpt. Photon. News 4(2), 9 (1993).
[CrossRef]

Other

M. P. Petrov, S. I. Stepanov, A. V. KhomenkoPhotorefractive Crystals in Coherent Optical Systems (Springer-Verlag, Berlin, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup for erase-beam scanning experiments and of the signal and the pump beam propagation in a photorefractive crystal.

Fig. 2
Fig. 2

Ratio ΔI/I as a function of coordinates along the crystal. U = 200 V, where the signal beam propagates through the crystal without reflection. Curve 1, horizontal input beam polarization; curve 2, 45° input polarization; curve 3, vertical input polarization. (b) U = 200 V, where the signal beam propagates with one reflection on the crystal surface. Curve 1, horizontal input beam polarization; curve 2, 45° input polarization; curve 3, vertical input polarization. (c) U = 750 V, with horizontal input beam polarization. Curve p, pump beam; curve s, signal beam.

Fig. 3
Fig. 3

Gain versus amplitude of the square-wave ac voltage for two-wave mixing. Curve 1, the beam propagates in the crystal with one reflection; curve 2, the beam propagates without reflection.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ I ( z ) / I = [ I I R ( z ) ] / I ,
b = λ ( Δ n l 2 + Δ n c 2 ) 1 / 2 ,
Δ n l = U λ / 2 U λ / 2 d , Δ n c = ρ λ / 180 .

Metrics