Abstract

We have constructed a miniature confocal optical microscope for monochromatic imaging that uses single-mode fiber illumination and a two-phase off-axis zone plate objective lens. The scanning mechanism consists of two micromachined silicon torsional scanning mirrors with orthogonal axes of rotation. The objective lens is made of fused silica and has a N.A. of 0.24 at λ = 0.6328 μm, with a 1.0-mm working distance. The device is side looking, with die dimensions of 1.2 mm × 2.5 mm × 6.5 mm. We have measured 1.0-μm resolution over a 100-μm field of view.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Seidlitz, M. Classen, Endoscopy 24, 225 (1992).
    [CrossRef] [PubMed]
  2. K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
    [CrossRef]
  3. R. Juškaitis, T. Wilson, Opt. Commun. 92, 315 (1992).
    [CrossRef]
  4. D. L. Dickensheets, G. S. Kino, Proc. SPIE 2184, 39 (1994).
    [CrossRef]
  5. L. Giniunas, R. Juškaitis, S. V. Shatalin, Electron. Lett. 27, 724 (1991).
    [CrossRef]
  6. T. Dabbs, M. Glass, Appl. Opt. 31, 3030 (1992).
    [CrossRef] [PubMed]
  7. L. Giniunas, R. Juškaitis, S. V. Shatalin, Appl. Opt. 32, 2888 (1993).
    [CrossRef] [PubMed]
  8. S. Sinzinger, J. Jahns, presented at the OSA Annual Meeting, Portland, Ore., September 10–15 1995.
  9. S. Sheard, T. Suhara, H. Nishihara, J. Lightwave Technol. 11, 1400 (1993).
    [CrossRef]
  10. B. R. Hopkins, Design Analysis of Shafts and Beams, 2nd ed. (Krieger, Malabar, Fla., 1987), p. 365.

1994 (1)

D. L. Dickensheets, G. S. Kino, Proc. SPIE 2184, 39 (1994).
[CrossRef]

1993 (2)

S. Sheard, T. Suhara, H. Nishihara, J. Lightwave Technol. 11, 1400 (1993).
[CrossRef]

L. Giniunas, R. Juškaitis, S. V. Shatalin, Appl. Opt. 32, 2888 (1993).
[CrossRef] [PubMed]

1992 (4)

T. Dabbs, M. Glass, Appl. Opt. 31, 3030 (1992).
[CrossRef] [PubMed]

H. K. Seidlitz, M. Classen, Endoscopy 24, 225 (1992).
[CrossRef] [PubMed]

K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
[CrossRef]

R. Juškaitis, T. Wilson, Opt. Commun. 92, 315 (1992).
[CrossRef]

1991 (1)

L. Giniunas, R. Juškaitis, S. V. Shatalin, Electron. Lett. 27, 724 (1991).
[CrossRef]

Classen, M.

H. K. Seidlitz, M. Classen, Endoscopy 24, 225 (1992).
[CrossRef] [PubMed]

Dabbs, T.

Dickensheets, D. L.

D. L. Dickensheets, G. S. Kino, Proc. SPIE 2184, 39 (1994).
[CrossRef]

Ghiggino, K. P.

K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
[CrossRef]

Giniunas, L.

L. Giniunas, R. Juškaitis, S. V. Shatalin, Appl. Opt. 32, 2888 (1993).
[CrossRef] [PubMed]

L. Giniunas, R. Juškaitis, S. V. Shatalin, Electron. Lett. 27, 724 (1991).
[CrossRef]

Glass, M.

Harris, M. R.

K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
[CrossRef]

Hopkins, B. R.

B. R. Hopkins, Design Analysis of Shafts and Beams, 2nd ed. (Krieger, Malabar, Fla., 1987), p. 365.

Jahns, J.

S. Sinzinger, J. Jahns, presented at the OSA Annual Meeting, Portland, Ore., September 10–15 1995.

Juškaitis, R.

L. Giniunas, R. Juškaitis, S. V. Shatalin, Appl. Opt. 32, 2888 (1993).
[CrossRef] [PubMed]

R. Juškaitis, T. Wilson, Opt. Commun. 92, 315 (1992).
[CrossRef]

L. Giniunas, R. Juškaitis, S. V. Shatalin, Electron. Lett. 27, 724 (1991).
[CrossRef]

Kino, G. S.

D. L. Dickensheets, G. S. Kino, Proc. SPIE 2184, 39 (1994).
[CrossRef]

Nishihara, H.

S. Sheard, T. Suhara, H. Nishihara, J. Lightwave Technol. 11, 1400 (1993).
[CrossRef]

Seidlitz, H. K.

H. K. Seidlitz, M. Classen, Endoscopy 24, 225 (1992).
[CrossRef] [PubMed]

Shatalin, S. V.

L. Giniunas, R. Juškaitis, S. V. Shatalin, Appl. Opt. 32, 2888 (1993).
[CrossRef] [PubMed]

L. Giniunas, R. Juškaitis, S. V. Shatalin, Electron. Lett. 27, 724 (1991).
[CrossRef]

Sheard, S.

S. Sheard, T. Suhara, H. Nishihara, J. Lightwave Technol. 11, 1400 (1993).
[CrossRef]

Sinzinger, S.

S. Sinzinger, J. Jahns, presented at the OSA Annual Meeting, Portland, Ore., September 10–15 1995.

Spizzirri, P. G.

K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
[CrossRef]

Suhara, T.

S. Sheard, T. Suhara, H. Nishihara, J. Lightwave Technol. 11, 1400 (1993).
[CrossRef]

Wilson, T.

R. Juškaitis, T. Wilson, Opt. Commun. 92, 315 (1992).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

L. Giniunas, R. Juškaitis, S. V. Shatalin, Electron. Lett. 27, 724 (1991).
[CrossRef]

Endoscopy (1)

H. K. Seidlitz, M. Classen, Endoscopy 24, 225 (1992).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

S. Sheard, T. Suhara, H. Nishihara, J. Lightwave Technol. 11, 1400 (1993).
[CrossRef]

Opt. Commun. (1)

R. Juškaitis, T. Wilson, Opt. Commun. 92, 315 (1992).
[CrossRef]

Proc. SPIE (1)

D. L. Dickensheets, G. S. Kino, Proc. SPIE 2184, 39 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

K. P. Ghiggino, M. R. Harris, P. G. Spizzirri, Rev. Sci. Instrum. 63, 2999 (1992).
[CrossRef]

Other (2)

B. R. Hopkins, Design Analysis of Shafts and Beams, 2nd ed. (Krieger, Malabar, Fla., 1987), p. 365.

S. Sinzinger, J. Jahns, presented at the OSA Annual Meeting, Portland, Ore., September 10–15 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Device architecture. The drawing at the left is a side view showing the folded optical path. The drawing at the right is an exploded view illustrating the various components of the assembly.

Fig. 2
Fig. 2

Cutaway view of a torsional scanning mirror.

Fig. 3
Fig. 3

Geometry of the off-axis lens with the beam path unfolded.

Fig. 4
Fig. 4

(a) Experimental (heavy curve) and theoretical (light curve) x-direction edge response for a chrome-on-glass target. The corresponding theoretical line-spread function is plotted with a dashed curve. (b) Experimental (heavy curve) and theoretical (light curve) axial response. The measured FWHM response is 11.1 μm.

Fig. 5
Fig. 5

Image of a silicon test structure consisting of grooves etched into the substrate. The field of view is 60 μm × 80 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω 0 = [ a δ 3 ( 4 - 2.52 δ / a ) E ρ c b 3 t l ( 1 + ν ) ] 1 / 2 ,

Metrics