Abstract

We introduce a novel polarizing beam splitter that uses the anisotropic spectral reflectivity (ASR) characteristic of a high-spatial-frequency multilayer binary grating. Such ASR effects allow us to design an optical element that is transparent for TM polarization and reflective for TE polarization. For normally incident light our element acts as a polarization-selective mirror. The properties of this polarizing beam splitter are investigated with rigorous coupled-wave analysis. The design results show that an ASR polarizing beam splitter can provide a high polarization extinction ratio for optical waves from a wide range of incident angles and a broad optical spectral bandwidth.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. L. Brubaker, A. L. Lentine, R. L. Morrison, S. J. Hinterlong, M. J. Herron, S. L. Walker, J. M. Sasian, Appl. Opt. 31, 5431 (1992).
    [CrossRef] [PubMed]
  2. M. Ojima, A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama, Y. Sugita, Appl. Opt. 25, 438 (1986).
    [CrossRef]
  3. P. Kunstmann, H.-J. Spitschan, Opt. Commun. 4, 166 (1971).
    [CrossRef]
  4. J. L. Pezzaniti, R. A. Chipman, Appl. Opt. 33, 1916 (1994).
  5. S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).
  6. M. G. Moharam, T. K. Gaylord, J. Opt. Soc. Am. 72, 1385 (1982).
    [CrossRef]
  7. I. Ricther, P. C. Sun, F. Xu, Y. Fainman, Appl. Opt. 34, 2421 (1995).
    [CrossRef]
  8. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, A. Scherer, Opt. Lett. 20, 2457 (1995).
    [CrossRef] [PubMed]
  9. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), p. 705.
  10. D. F. Edwards, in Handbood of Optical Constants of Solids, E. D. Palik, ed., (Academic, Orlando, Fla., 1985), p. 547.

1995 (2)

1994 (1)

1992 (1)

1986 (1)

1982 (1)

1971 (1)

P. Kunstmann, H.-J. Spitschan, Opt. Commun. 4, 166 (1971).
[CrossRef]

1956 (1)

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), p. 705.

Brubaker, J. L.

Cheng, C.-C.

Chipman, R. A.

Cloonan, T. J.

Edwards, D. F.

D. F. Edwards, in Handbood of Optical Constants of Solids, E. D. Palik, ed., (Academic, Orlando, Fla., 1985), p. 547.

Fainman, Y.

Gaylord, T. K.

Herron, M. J.

Hinterlong, S. J.

Ito, M.

Kaku, T.

Kunstmann, P.

P. Kunstmann, H.-J. Spitschan, Opt. Commun. 4, 166 (1971).
[CrossRef]

Lentine, A. L.

McCormick, F. B.

Moharam, M. G.

Morrison, R. L.

Ojima, M.

Pezzaniti, J. L.

Ricther, I.

Rytov, S. M.

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Saito, A.

Sasian, J. M.

Scherer, A.

Spitschan, H.-J.

P. Kunstmann, H.-J. Spitschan, Opt. Commun. 4, 166 (1971).
[CrossRef]

Sugita, Y.

Sun, P. C.

Sun, P.-C.

Takayama, S.

Tooley, F. A. P.

Tsunoda, Y.

Tyan, R.-C.

Walker, S. L.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), p. 705.

Xu, F.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of an ASR PBS operated with plane waves at normal incidence. (b) Numerical results of the reflectivity for TE- and TM-polarized waves versus wavelength of a seven-layer PBS designed for normally incident waves.

Fig. 2
Fig. 2

(a) Schematic diagram of five-layer ASR PBS operated with incident waves at an angle of 42°. (b) Numerical results for the reflectivity of TE- and TM-polarized waves versus wavelength for 42° incidence.

Fig. 3
Fig. 3

Contour plots of TE reflectance and TM transmittance versus incident angles (ϕ, θ) as defined in Fig. 2(a): (a) TE reflectance at wavelength λ = 1.3 μm, (b) TM transmittance at wavelength λ = 1.3 μm, (c) TE reflectance at wavelength λ = 1.5 μm, and (d) TM transmittance at wavelength λ = 1.5 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n TE ( 2 ) = [ n TE ( 0 ) 2 + 1 3 ( Λ λ ) 2 π 2 F 2 ( 1 - F ) 2 ( n III 2 - n I 2 ) 2 ] 1 / 2 ,
n TM ( 2 ) = [ n TM ( 0 ) 2 + 1 3 ( Λ λ ) 2 π 2 F 2 ( 1 - F ) 2 × ( 1 n III 2 - 1 n I 2 ) 2 n TE ( 0 ) 2 n TM ( 0 ) 6 ] 1 / 2 ,

Metrics