Abstract

Simultaneous temporal and spatial shaping of ultrashort optical pulses is demonstrated. A two-dimensional mask pattern is used to filter spatially separated frequency components along one coordinate and to impart a shaped spatial (or wave-vector) profile along the perpendicular coordinate, yielding a spatially and temporally coherent output waveform. As an example, a single input pulse is transformed into 11 spatially separated output beams, each with an independently specified temporal profile.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, J. P. Heritage, E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
    [CrossRef]
  2. D. Brady, A. G. S. Chen, G. Rodriguez, Opt. Lett. 17, 610 (1992).
    [CrossRef] [PubMed]
  3. A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum. Electron. 28, 908 (1992).
    [CrossRef]
  4. M. Haner, W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
    [CrossRef]
  5. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, W. S. Warren, Opt. Lett. 19, 737 (1994).
    [CrossRef] [PubMed]
  6. M. M. Wefers, K. A. Nelson, Opt. Lett. 18, 2032 (1993).
    [CrossRef] [PubMed]
  7. A. Efimov, C. Schaffer, D. H. Reitze, J. Opt. Soc. Am. B 12, 1968 (1995).
  8. M. M. Wefers, K. A. Nelson, Opt. Lett. 20, 1047 (1995).
    [CrossRef] [PubMed]
  9. W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993).
    [CrossRef] [PubMed]
  10. H. Kawashima, M. M. Wefers, K. A. Nelson, Ann. Rev. Phys. Chem. 46, 627 (1995).
    [CrossRef]
  11. I. Brener, P. C. M. Planken, M. C. Nuss, L. Pfeifferm, D. E. Leaird, A. M. Weiner, Appl. Phys. Lett. 63, 2213 (1993).
    [CrossRef]
  12. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, Science 247, 1317 (1990).
    [CrossRef] [PubMed]
  13. A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, Opt. Lett. 17, 224 (1992).
    [CrossRef] [PubMed]
  14. M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Partovi, Opt. Lett. 19, 664 (1994).
    [CrossRef] [PubMed]
  15. M. C. Nuss, R. L. Morrison, Opt. Lett. 20, 740 (1995).
    [CrossRef] [PubMed]
  16. K. B. Hill, K. G. P. Purchase, D. J. Brady, Opt. Lett. 20, 1201 (1995).
    [CrossRef] [PubMed]
  17. K. A. Nelson, “Coherent control: optics, molecules, and materials,” in Ultrafast Phemonena IX, G. A. Mourou, A. H. Zewail, P. F. Barbara, W. H. Knox, eds. (Springer-Verlag, Berlin, 1994), pp. 47–49.
    [CrossRef]
  18. A. M. Weiner, D. E. Leaird, Opt. Lett. 15, 51 (1990).
    [CrossRef] [PubMed]
  19. G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1968) pp. 133–144.
  20. M. M. Wefers, K. A. Nelson, J. Opt. Soc. Am. B 12, 1343 (1995).
    [CrossRef]
  21. M. M. Wefers, K. A. Nelson, IEEE J. Quantum Electron. 32, 161 (1996).
    [CrossRef]

1996 (1)

M. M. Wefers, K. A. Nelson, IEEE J. Quantum Electron. 32, 161 (1996).
[CrossRef]

1995 (6)

1994 (2)

1993 (3)

M. M. Wefers, K. A. Nelson, Opt. Lett. 18, 2032 (1993).
[CrossRef] [PubMed]

I. Brener, P. C. M. Planken, M. C. Nuss, L. Pfeifferm, D. E. Leaird, A. M. Weiner, Appl. Phys. Lett. 63, 2213 (1993).
[CrossRef]

W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

1992 (3)

1990 (2)

A. M. Weiner, D. E. Leaird, Opt. Lett. 15, 51 (1990).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

1988 (2)

Brady, D.

Brady, D. J.

Brener, I.

I. Brener, P. C. M. Planken, M. C. Nuss, L. Pfeifferm, D. E. Leaird, A. M. Weiner, Appl. Phys. Lett. 63, 2213 (1993).
[CrossRef]

Chen, A. G. S.

Chiu, T. H.

Dahleh, M.

W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Efimov, A.

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1968) pp. 133–144.

Goswami, D.

Haner, M.

M. Haner, W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
[CrossRef]

Heritage, J. P.

Hill, K. B.

Hillegas, C. W.

Kawashima, H.

H. Kawashima, M. M. Wefers, K. A. Nelson, Ann. Rev. Phys. Chem. 46, 627 (1995).
[CrossRef]

Kirschner, E. M.

Leaird, D. E.

I. Brener, P. C. M. Planken, M. C. Nuss, L. Pfeifferm, D. E. Leaird, A. M. Weiner, Appl. Phys. Lett. 63, 2213 (1993).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, Opt. Lett. 17, 224 (1992).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum. Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, Opt. Lett. 15, 51 (1990).
[CrossRef] [PubMed]

Li, M.

Morrison, R. L.

Nelson, K. A.

M. M. Wefers, K. A. Nelson, IEEE J. Quantum Electron. 32, 161 (1996).
[CrossRef]

M. M. Wefers, K. A. Nelson, J. Opt. Soc. Am. B 12, 1343 (1995).
[CrossRef]

H. Kawashima, M. M. Wefers, K. A. Nelson, Ann. Rev. Phys. Chem. 46, 627 (1995).
[CrossRef]

M. M. Wefers, K. A. Nelson, Opt. Lett. 20, 1047 (1995).
[CrossRef] [PubMed]

M. M. Wefers, K. A. Nelson, Opt. Lett. 18, 2032 (1993).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

K. A. Nelson, “Coherent control: optics, molecules, and materials,” in Ultrafast Phemonena IX, G. A. Mourou, A. H. Zewail, P. F. Barbara, W. H. Knox, eds. (Springer-Verlag, Berlin, 1994), pp. 47–49.
[CrossRef]

Nuss, M. C.

Paek, E. G.

Partovi, A.

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum. Electron. 28, 908 (1992).
[CrossRef]

Pfeifferm, L.

I. Brener, P. C. M. Planken, M. C. Nuss, L. Pfeifferm, D. E. Leaird, A. M. Weiner, Appl. Phys. Lett. 63, 2213 (1993).
[CrossRef]

Planken, P. C. M.

I. Brener, P. C. M. Planken, M. C. Nuss, L. Pfeifferm, D. E. Leaird, A. M. Weiner, Appl. Phys. Lett. 63, 2213 (1993).
[CrossRef]

Purchase, K. G. P.

Rabitz, H.

W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

Reitze, D. H.

Rodriguez, G.

Schaffer, C.

Strickland, D.

Tull, J. X.

Warren, W. S.

C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, W. S. Warren, Opt. Lett. 19, 737 (1994).
[CrossRef] [PubMed]

W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

M. Haner, W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
[CrossRef]

Wefers, M. M.

Weiner, A. M.

M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Partovi, Opt. Lett. 19, 664 (1994).
[CrossRef] [PubMed]

I. Brener, P. C. M. Planken, M. C. Nuss, L. Pfeifferm, D. E. Leaird, A. M. Weiner, Appl. Phys. Lett. 63, 2213 (1993).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, Opt. Lett. 17, 224 (1992).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum. Electron. 28, 908 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, Opt. Lett. 15, 51 (1990).
[CrossRef] [PubMed]

A. M. Weiner, J. P. Heritage, E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
[CrossRef]

Wiederrecht, G. P.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum. Electron. 28, 908 (1992).
[CrossRef]

Ann. Rev. Phys. Chem. (1)

H. Kawashima, M. M. Wefers, K. A. Nelson, Ann. Rev. Phys. Chem. 46, 627 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

I. Brener, P. C. M. Planken, M. C. Nuss, L. Pfeifferm, D. E. Leaird, A. M. Weiner, Appl. Phys. Lett. 63, 2213 (1993).
[CrossRef]

M. Haner, W. S. Warren, Appl. Phys. Lett. 52, 1458 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Wefers, K. A. Nelson, IEEE J. Quantum Electron. 32, 161 (1996).
[CrossRef]

IEEE J. Quantum. Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, IEEE J. Quantum. Electron. 28, 908 (1992).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (9)

Science (2)

W. S. Warren, H. Rabitz, M. Dahleh, Science 259, 1581 (1993).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, Science 247, 1317 (1990).
[CrossRef] [PubMed]

Other (2)

K. A. Nelson, “Coherent control: optics, molecules, and materials,” in Ultrafast Phemonena IX, G. A. Mourou, A. H. Zewail, P. F. Barbara, W. H. Knox, eds. (Springer-Verlag, Berlin, 1994), pp. 47–49.
[CrossRef]

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1968) pp. 133–144.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Apparatus used for generation of multidimensional ultrafast optical waveforms. The pulse shaper consists of two antiparallel 1200-line/mm gratings at an incident angle of 45.25°, a 20-cm (focal length F) cylindrical lens (curvature along the x axis), two 15-cm (focal length f) spherical lenses, and a two-dimensional mask (2-D). The first grating disperses the frequency components of the incident pulse along the x (horizontal) axis. The cylindrical lens focuses the separated components onto different, horizontally separated regions of the mask but leaves them unfocused along the vertical ( y-axis) direction. The mask filters different frequency components along the x axis and different spatial or wave-vector components along the y axis. The subsequent spherical lens and antiparallel grating recombine the spectrally filtered frequency components. A second 15-cm spherical lens is positioned to form a one-to-one telescope with the spherical lens following the mask, so the vertical spatial pattern of light immediately following the mask is imaged onto the sample. Characterization is performed by use of a doubling crystal as the sample and by cross correlation with a variably delayed unshaped reference pulse, which is focused to a vertical line and overlaps the shaped beam. To filter vertical wave-vector instead of spatial components, one could position the second spherical lens a distance 2f (rather than f) from both the sample and the second grating, thereby imaging onto the sample the spatial profile of the beam immediately after the grating.

Fig. 2
Fig. 2

Cross-correlation images of the shaped waveform at different times. The images show that different spots appear and disappear on femtosecond time scales.

Fig. 3
Fig. 3

Spatially resolved cross-correlation measurements of the shaped waveform. The waveform consists of 11 spots separated by 250 μm. The cross correlation of each spot shows a sequence of equally spaced femtosecond pulses. A dotted line is placed along time-delay −1.37 ps to illustrate the varying repetition rate between adjacent spots and to provide a comparison with Fig. 2d, which shows the spatial profile at this delay time.

Metrics