Abstract

We report a continuous-wave singly resonant optical parametric oscillator (OPO) based on periodically poled lithium niobate. The simple, two-mirror OPO, pumped by a 1.064-μm Nd:YAG laser, had a 2.6–4.5-W threshold and an output of >1.2 W at 3.3 μm and was tuned over 1.45–1.62 μm (signal) and 3.98–3.11 μm (idler). The noise characteristics and the spectral properties of the device are described.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, Proc. IEEE 57, 2096 (1969).
    [CrossRef]
  2. J. E. Bjorkholm, Appl. Phys. Lett. 13, 399 (1968).
    [CrossRef]
  3. R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).
    [CrossRef]
  4. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, R. L. Byer, J. Opt. Soc. Am. B 8, 646 (1991).
    [CrossRef]
  5. D. Lee, N. C. Wong, J. Opt. Soc. Am. B 10, 1659 (1993).
    [CrossRef]
  6. F. G. Colville, M. J. Padgett, M. H. Dunn, Appl. Phys. Lett. 64, 1490 (1994).
    [CrossRef]
  7. S. T. Yang, R. C. Eckardt, R. L. Byer, Opt. Lett. 18, 971 (1993).
    [CrossRef] [PubMed]
  8. S. T. Yang, R. C. Echardt, R. L. Byer, Opt. Lett. 18, 475 (1993).
  9. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  10. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, Opt. Lett. 21, 594 (1996).
    [CrossRef]
  11. S. T. Yang, R. C. Eckardt, R. L. Byer, J. Opt. Soc. Am. B 10, 1684 (1993).
    [CrossRef]
  12. S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
    [CrossRef]
  13. In focusing the pump more tightly, we changed the focal length of the lens (see Fig. 1), moved the crystal to the new focus location, and adjusted the curvature and spacing of the OPO cavity mirrors to maintain the same mode matching between the pump and the OPO resonator.
  14. A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, M. H. Dunn, Opt. Commun. 119, 256 (1995).
    [CrossRef]

1996 (1)

1995 (2)

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, M. H. Dunn, Opt. Commun. 119, 256 (1995).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
[CrossRef]

1994 (1)

F. G. Colville, M. J. Padgett, M. H. Dunn, Appl. Phys. Lett. 64, 1490 (1994).
[CrossRef]

1993 (4)

1991 (1)

1982 (1)

S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

1973 (1)

R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).
[CrossRef]

1969 (1)

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

1968 (1)

J. E. Bjorkholm, Appl. Phys. Lett. 13, 399 (1968).
[CrossRef]

Bjorkholm, J. E.

J. E. Bjorkholm, Appl. Phys. Lett. 13, 399 (1968).
[CrossRef]

Bosenberg, W. R.

Byer, R. L.

Colville, F. G.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, M. H. Dunn, Opt. Commun. 119, 256 (1995).
[CrossRef]

F. G. Colville, M. J. Padgett, M. H. Dunn, Appl. Phys. Lett. 64, 1490 (1994).
[CrossRef]

Dunn, M. H.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, M. H. Dunn, Opt. Commun. 119, 256 (1995).
[CrossRef]

F. G. Colville, M. J. Padgett, M. H. Dunn, Appl. Phys. Lett. 64, 1490 (1994).
[CrossRef]

Echardt, R. C.

S. T. Yang, R. C. Echardt, R. L. Byer, Opt. Lett. 18, 475 (1993).

Eckardt, R. C.

Falk, J.

S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Fejer, M. M.

Guha, S.

S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Harris, S. E.

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

Henderson, A. J.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, M. H. Dunn, Opt. Commun. 119, 256 (1995).
[CrossRef]

Kozlovsky, W. J.

Lee, D.

Myers, L. E.

Nabors, C. D.

Padgett, M. J.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, M. H. Dunn, Opt. Commun. 119, 256 (1995).
[CrossRef]

F. G. Colville, M. J. Padgett, M. H. Dunn, Appl. Phys. Lett. 64, 1490 (1994).
[CrossRef]

Pierce, J. W.

Smith, R. G.

R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).
[CrossRef]

Wong, N. C.

Wu, F. J.

S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

Yang, S. T.

Zhang, J.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, M. H. Dunn, Opt. Commun. 119, 256 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

J. E. Bjorkholm, Appl. Phys. Lett. 13, 399 (1968).
[CrossRef]

F. G. Colville, M. J. Padgett, M. H. Dunn, Appl. Phys. Lett. 64, 1490 (1994).
[CrossRef]

IEEE J. Quantum Electron (2)

R. G. Smith, IEEE J. Quantum Electron. QE-9, 530 (1973).
[CrossRef]

S. Guha, F. J. Wu, J. Falk, IEEE J. Quantum Electron. QE-18, 907 (1982).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, M. H. Dunn, Opt. Commun. 119, 256 (1995).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (1)

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

Other (1)

In focusing the pump more tightly, we changed the focal length of the lens (see Fig. 1), moved the crystal to the new focus location, and adjusted the curvature and spacing of the OPO cavity mirrors to maintain the same mode matching between the pump and the OPO resonator.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental configuration. The diode-pumped Nd:YAG laser produces 17 W of polarized TEM00 output. The PPLN is 50 mm long and has a grating period of 29.75 μm for first-order quasi-phase matching of 1.064-μm pump photons to 1.57-μm signal and 3.25-μm idler photons (at a crystal temperature of 175 °C). Not shown is the crystal oven. The crystal temperature was kept in the range of 110–220 °C.

Fig. 2
Fig. 2

Output versus input of the cw PPLN OPO. The oscillation threshold is 4.5 W. The maximum output is 1.25 W at 3.25 μm and 0.36 W at 1.57 μm with 13 W of pump.

Fig. 3
Fig. 3

Amplitude noise characteristics of the cw SRO. The Y axis of each graph is signal power in watts. Note that the bottom of the Y axis is not zero; therefore the fluctuations appear enlarged. a, Output of the free-running OPO over a 1-s interval with single-longitudinal-mode operation. b, Output of the free-running OPO over a 30-min interval with longitudinal mode hopping causing the increased noise. c, OPO output when the cavity length is swept with a piezoelectric transducer. The well-defined mode hops occur at a large fraction of the free spectral range of the signal (0.79 μm) and indicate the singly resonant nature of the device.

Metrics