Abstract

Detection of CO, N2O, and CO2 in ambient air was performed with a room-temperature cw IR source based on difference-frequency generation in periodically poled LiNbO3. The source was pumped by a seeded high-power GaAlAs amplifier at 860 nm and a diode-pumped monolithic Nd:YAG ring laser at 1064 nm. The IR output was tunable between 2160 and 2320 cm−1 without crystal rotation. The CO detection sensitivity is extrapolated to 5 ppb m/Hz if limited by IR intensity noise.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Goldberg, W. K. Burns, R. W. McElhanon, Opt. Lett. 20, 1280 (1995).
    [CrossRef] [PubMed]
  2. S. Sanders, R. J. Lang, L. E. Myers, M. M. Fejer, R. L. Byer, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 370.
  3. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, Opt. Lett. 20, 52 (1995).
    [CrossRef] [PubMed]
  4. L. Goldberg, W. K. Burns, R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).
    [CrossRef]
  5. GEISA database (LMD Centre National de l’Ecole Polytechnique, 91128, Palaiseau Cedex, France).
  6. U. Simon, F. K. Tittel, L. Goldberg, Opt. Lett. 18, 1931 (1993).
    [CrossRef] [PubMed]
  7. D. K. Killinger, J. H. Churnside, L. S. Rothman, in Fundamentals, Techniques, and Design, Vol. 1 of Handbook of Optics, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Chap. 44, p. 5.
  8. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, Appl. Opt. 33,454 (1994).
    [CrossRef] [PubMed]

1995

1994

1993

Burns, W. K.

L. Goldberg, W. K. Burns, R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).
[CrossRef]

L. Goldberg, W. K. Burns, R. W. McElhanon, Opt. Lett. 20, 1280 (1995).
[CrossRef] [PubMed]

Byer, R. L.

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, Opt. Lett. 20, 52 (1995).
[CrossRef] [PubMed]

S. Sanders, R. J. Lang, L. E. Myers, M. M. Fejer, R. L. Byer, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 370.

Chave, R. G.

Churnside, J. H.

D. K. Killinger, J. H. Churnside, L. S. Rothman, in Fundamentals, Techniques, and Design, Vol. 1 of Handbook of Optics, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Chap. 44, p. 5.

Eckardt, R. C.

Fejer, M. M.

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, Opt. Lett. 20, 52 (1995).
[CrossRef] [PubMed]

S. Sanders, R. J. Lang, L. E. Myers, M. M. Fejer, R. L. Byer, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 370.

Goldberg, L.

Kendall, J.

Killinger, D. K.

D. K. Killinger, J. H. Churnside, L. S. Rothman, in Fundamentals, Techniques, and Design, Vol. 1 of Handbook of Optics, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Chap. 44, p. 5.

Lang, R. J.

S. Sanders, R. J. Lang, L. E. Myers, M. M. Fejer, R. L. Byer, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 370.

May, R. D.

McElhanon, R. W.

L. Goldberg, W. K. Burns, R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).
[CrossRef]

L. Goldberg, W. K. Burns, R. W. McElhanon, Opt. Lett. 20, 1280 (1995).
[CrossRef] [PubMed]

Miller, G. D.

Myers, L. E.

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, Opt. Lett. 20, 52 (1995).
[CrossRef] [PubMed]

S. Sanders, R. J. Lang, L. E. Myers, M. M. Fejer, R. L. Byer, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 370.

Rothman, L. S.

D. K. Killinger, J. H. Churnside, L. S. Rothman, in Fundamentals, Techniques, and Design, Vol. 1 of Handbook of Optics, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Chap. 44, p. 5.

Sanders, S.

S. Sanders, R. J. Lang, L. E. Myers, M. M. Fejer, R. L. Byer, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 370.

Simon, U.

Tittel, F. K.

Trimble, C. A.

Webster, C. R.

Appl. Opt.

Appl. Phys. Lett.

L. Goldberg, W. K. Burns, R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).
[CrossRef]

Opt. Lett.

Other

GEISA database (LMD Centre National de l’Ecole Polytechnique, 91128, Palaiseau Cedex, France).

D. K. Killinger, J. H. Churnside, L. S. Rothman, in Fundamentals, Techniques, and Design, Vol. 1 of Handbook of Optics, 2nd ed., M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Chap. 44, p. 5.

S. Sanders, R. J. Lang, L. E. Myers, M. M. Fejer, R. L. Byer, in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 370.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the tunable cw mid-IR DFG source used for detection of CO, N2O, and CO2 in air. The nonlinear mixing element was a quasi-phase-matched (QPM) periodically poled LiNbO3 crystal. FI’s, Faraday isolators; DBS, dichroic beam splitter; BS, beam splitter.

Fig. 2
Fig. 2

Rms intensity noise in the IR beam. The data were acquired with a rf spectrum analyzer and converted to units of W / Hz.

Fig. 3
Fig. 3

Direct-absorption (top trace) and wavelength-modulation 1f and 2f (middle and bottom traces, shown on the same vertical scale) spectra of CO2 in 2.5-m ambient air near 2303 cm−1 recorded with a digital scope. The frequency sweep of 2.5 cm−1 is reversed at the center. The transitions seen here are P(50) (0001–0000), R(26) (0001–0000), P(39) (0111–0110), and R(24) (0001–0000), from left to right in the left half of the figure.5 Both R transitions belong to 16O13C16O.

Fig. 4
Fig. 4

Wavelength-modulation 2f spectra of the R(6) fundamental of CO at 2169 cm−1 in 4.2-m ambient air (30 × magnified, top), and a reference sample (~3-Torr CO mixed with room air in a 10-cm cell, bottom). The frequency sweep of ~20 GHz is reversed at the center. The sweep rate was 10.6 Hz, the modulation frequency was 2 kHz, and the lock-in time constant was 1 ms. Both traces are 100-sweep averages.

Metrics