Abstract

We experimentally demonstrate a novel, all-optical technique that spatially isolates two parts of a temporally encoded optical information stream from each other by means of spatial–spectral holographic technology. A brief reference pulse is applied to an inhomogeneously broadened absorber [Tm3+ :YAG (0.1 at. %) at ~ 4.4 K] in the direction opposite that of the information stream, overlapping it on a boundary between the two temporal parts to be isolated (i.e., the header and the data). Another brief reference pulse subsequently applied in the opposite (the same) direction as that of the information stream results in an emitted optical output that mimicks only the part of the information stream that follows (precedes) the first reference pulse in a time-forward (time-reversed) fashion, completely isolated from the other part.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Mossberg, Opt. Lett. 7, 77 (1982).
    [CrossRef] [PubMed]
  2. W. R. Babbitt, Y. S. Bai, T. W. Mossberg, Proc. Soc. Photo-Opt. Instrum. Eng. 639, 240 (1986).
  3. M. Mitsunaga, Opt. Quantum Electron. 24, 1137 (1992), and references therein.
    [CrossRef]
  4. X. A. Shen, Y. S. Bai, R. Kachru, Opt. Lett. 17, 1079 (1992).
    [CrossRef] [PubMed]
  5. W. R. Babbitt, J. A. Bell, Appl. Opt. 33, 1538 (1994).
    [CrossRef] [PubMed]
  6. W. R. Babbitt, T. W. Mossberg, Opt. Lett. 20, 910 (1995).
    [CrossRef] [PubMed]
  7. W. R. Babbitt, Proc. Soc. Photo-Opt. Instrum. Eng. 2026, 532 (1993).
  8. S. Kroll, P. Tidlund, Appl. Opt. 32, 7233 (1993).
    [CrossRef] [PubMed]
  9. R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994), and references therein.
    [CrossRef] [PubMed]
  10. R. M. Macfarlane, Opt. Lett. 18,1958 (1993).
    [CrossRef] [PubMed]
  11. Y. S. Bai, R. Kachru, Opt. Lett. 18,1189 (1993).
    [CrossRef] [PubMed]

1995

1994

R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994), and references therein.
[CrossRef] [PubMed]

W. R. Babbitt, J. A. Bell, Appl. Opt. 33, 1538 (1994).
[CrossRef] [PubMed]

1993

1992

M. Mitsunaga, Opt. Quantum Electron. 24, 1137 (1992), and references therein.
[CrossRef]

X. A. Shen, Y. S. Bai, R. Kachru, Opt. Lett. 17, 1079 (1992).
[CrossRef] [PubMed]

1986

W. R. Babbitt, Y. S. Bai, T. W. Mossberg, Proc. Soc. Photo-Opt. Instrum. Eng. 639, 240 (1986).

1982

Babbitt, W. R.

W. R. Babbitt, T. W. Mossberg, Opt. Lett. 20, 910 (1995).
[CrossRef] [PubMed]

W. R. Babbitt, J. A. Bell, Appl. Opt. 33, 1538 (1994).
[CrossRef] [PubMed]

W. R. Babbitt, Proc. Soc. Photo-Opt. Instrum. Eng. 2026, 532 (1993).

W. R. Babbitt, Y. S. Bai, T. W. Mossberg, Proc. Soc. Photo-Opt. Instrum. Eng. 639, 240 (1986).

Bai, Y. S.

Bell, J. A.

Cone, R. L.

R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994), and references therein.
[CrossRef] [PubMed]

Equall, R. W.

R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994), and references therein.
[CrossRef] [PubMed]

Kachru, R.

Kroll, S.

Macfarlane, R. M.

R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994), and references therein.
[CrossRef] [PubMed]

R. M. Macfarlane, Opt. Lett. 18,1958 (1993).
[CrossRef] [PubMed]

Mitsunaga, M.

M. Mitsunaga, Opt. Quantum Electron. 24, 1137 (1992), and references therein.
[CrossRef]

Mossberg, T. W.

W. R. Babbitt, T. W. Mossberg, Opt. Lett. 20, 910 (1995).
[CrossRef] [PubMed]

W. R. Babbitt, Y. S. Bai, T. W. Mossberg, Proc. Soc. Photo-Opt. Instrum. Eng. 639, 240 (1986).

T. W. Mossberg, Opt. Lett. 7, 77 (1982).
[CrossRef] [PubMed]

Shen, X. A.

Sun, Y.

R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994), and references therein.
[CrossRef] [PubMed]

Tidlund, P.

Appl. Opt.

Opt. Lett.

Opt. Quantum Electron.

M. Mitsunaga, Opt. Quantum Electron. 24, 1137 (1992), and references therein.
[CrossRef]

Phys. Rev. Lett.

R. W. Equall, Y. Sun, R. L. Cone, R. M. Macfarlane, Phys. Rev. Lett. 72, 2179 (1994), and references therein.
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng.

W. R. Babbitt, Proc. Soc. Photo-Opt. Instrum. Eng. 2026, 532 (1993).

W. R. Babbitt, Y. S. Bai, T. W. Mossberg, Proc. Soc. Photo-Opt. Instrum. Eng. 639, 240 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Input sequences and output (a) for the header isolator and (b) for the data isolator. Upon one beam is the information stream, consisting of a header (H) and the data (D) separated by a zero-intensity segment; along the other beam is the write BRP (BW), which temporally overlaps the zero-intensity segment. In the header isolator (a) the read BRP (BR) is incident along beam 1, and H is recalled (time reversed) along beam 2. In the data isolator (b), BR is incident along beam 2, and D is recalled collinearly along beam 1.

Fig. 2
Fig. 2

Schematic of the experimental setup.

Fig. 3
Fig. 3

Experimental inputs and outputs: (a), (b) the header isolator; (c), (d) the data isolator. The output signals (in boldface) are gated “on” into the PMT for the full 2.0-μs duration shown, (i.e., 0.7 μs before the read BRP) to illustrate isolation. The small peak at 3.7 μs is backscattering of the read BRP from the face of the crystal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E s ( t ) E 1 * ( ν ) E 2 ( ν ) E 3 ( ν ) exp ( i 2 π ν t ) d ν ,
k S = k 3 + k 2 k 1 ,    | k S | | k 3 | ,

Metrics