Abstract

We present three-dimensional, high-contrast maps of 180° domains hidden inside photorefractive crystals of BaTiO3. Some domains are columns that run the entire length of the crystal, whereas others are short needles that begin predominantly on the −c surface but disappear inside the crystal bulk.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Klein, in Photorefractive Materials and Their Applications I, P. Günter, J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
  2. F. Jona, G. Shirane, Ferroelectric Crystals (Pergamon, Oxford, 1962).
  3. G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MB1.
  4. R. W. Hellwarth, P. Christensen, Opt. Commun. 12, 318 (1974).
    [CrossRef]
  5. F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Europhys. Lett. 13, 405 (1990).
    [CrossRef]
  6. F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Phase Trans. 40, 171 (1992).
    [CrossRef]
  7. S. MacCormack, J. Feinberg, “Revealing 180° domains in ferroelectric crystals by photorefractive beam coupling,”submitted to Appl. Opt.
  8. S. MacCormack, J. Feinberg, B. A. Wechsler, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MPB13.
  9. Spyglass Dicer, Spyglass Inc., 1800 Woodfield Drive, Savoy, Illinois61874.

1992

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Phase Trans. 40, 171 (1992).
[CrossRef]

1990

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Europhys. Lett. 13, 405 (1990).
[CrossRef]

1974

R. W. Hellwarth, P. Christensen, Opt. Commun. 12, 318 (1974).
[CrossRef]

Christensen, P.

R. W. Hellwarth, P. Christensen, Opt. Commun. 12, 318 (1974).
[CrossRef]

Cronin-Golomb, M.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MB1.

Feinberg, J.

S. MacCormack, J. Feinberg, “Revealing 180° domains in ferroelectric crystals by photorefractive beam coupling,”submitted to Appl. Opt.

S. MacCormack, J. Feinberg, B. A. Wechsler, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MPB13.

Fogarty, G.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MB1.

Hellwarth, R. W.

R. W. Hellwarth, P. Christensen, Opt. Commun. 12, 318 (1974).
[CrossRef]

Jona, F.

F. Jona, G. Shirane, Ferroelectric Crystals (Pergamon, Oxford, 1962).

Kahmann, F.

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Phase Trans. 40, 171 (1992).
[CrossRef]

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Europhys. Lett. 13, 405 (1990).
[CrossRef]

Klein, M. B.

M. B. Klein, in Photorefractive Materials and Their Applications I, P. Günter, J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).

Laor, U.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MB1.

MacCormack, S.

S. MacCormack, J. Feinberg, “Revealing 180° domains in ferroelectric crystals by photorefractive beam coupling,”submitted to Appl. Opt.

S. MacCormack, J. Feinberg, B. A. Wechsler, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MPB13.

Martin, J.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MB1.

Matull, R.

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Phase Trans. 40, 171 (1992).
[CrossRef]

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Europhys. Lett. 13, 405 (1990).
[CrossRef]

Rupp, R. A.

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Phase Trans. 40, 171 (1992).
[CrossRef]

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Europhys. Lett. 13, 405 (1990).
[CrossRef]

Seglins, J.

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Phase Trans. 40, 171 (1992).
[CrossRef]

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Europhys. Lett. 13, 405 (1990).
[CrossRef]

Shirane, G.

F. Jona, G. Shirane, Ferroelectric Crystals (Pergamon, Oxford, 1962).

Steiner, B.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MB1.

Uhrin, R.

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MB1.

Wechsler, B. A.

S. MacCormack, J. Feinberg, B. A. Wechsler, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MPB13.

Europhys. Lett.

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Europhys. Lett. 13, 405 (1990).
[CrossRef]

Opt. Commun.

R. W. Hellwarth, P. Christensen, Opt. Commun. 12, 318 (1974).
[CrossRef]

Phase Trans.

F. Kahmann, R. Matull, R. A. Rupp, J. Seglins, Phase Trans. 40, 171 (1992).
[CrossRef]

Other

S. MacCormack, J. Feinberg, “Revealing 180° domains in ferroelectric crystals by photorefractive beam coupling,”submitted to Appl. Opt.

S. MacCormack, J. Feinberg, B. A. Wechsler, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MPB13.

Spyglass Dicer, Spyglass Inc., 1800 Woodfield Drive, Savoy, Illinois61874.

M. B. Klein, in Photorefractive Materials and Their Applications I, P. Günter, J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).

F. Jona, G. Shirane, Ferroelectric Crystals (Pergamon, Oxford, 1962).

G. Fogarty, B. Steiner, M. Cronin-Golomb, U. Laor, R. Uhrin, J. Martin, in Digest of Topical Meeting on Photorefractive Materials, Effects and Devices (Optical Society of America, Washington, D.C., 1995), paper MB1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Domains in BaTiO3 crystals have their polarizations aligned either 90° or 180° to the crystal’s c axis. The 90° domains tend to form at the corners and along the edges of the crystal, whereas the 180° domains prefer the bulk of the crystal.

Fig. 2
Fig. 2

Optical setup used to observe 180° domains hidden inside a BaTiO3 crystal. The crystal was translated in steps by a precision translation stage to select a different intersection plane of the pump and the signal beams. The transmitted signal beam revealed 180° domains present in each optical slice through the crystal; the camera (CCD) and the computer recorded each slice.

Fig. 3
Fig. 3

Profile of the transmitted signal beam (a) with the pump beam absent and (b) with the pump beam switched on. Each bright square corresponds to a 180° domain. The fringes in (a) are due to the interference of multiple reflections from the crystal surface. (b) Is one of 20 data slices, all orthogonal to the c axis, used to construct the three-dimensional map of the 180° domains inside the crystal seen in Fig. 5 below. The very small squares barely visible on the transmitted beam shown in (a) arise from phase steps etched by acids during crystal polishing.

Fig. 4
Fig. 4

Two reconstructed slices of the BaTiO3 crystal cut parallel to the crystal c axis. (These slices were reconstructed from 20 data slices as in Fig. 3.) One can see dagger domains starting at the c faces and tapering into the crystal. Also visible are pillar domains that run the entire length of the crystal’s c axis.

Fig. 5
Fig. 5

Three-dimensional reconstruction of the domain structure inside a nominally undoped BaTiO3 crystal (FRANK). The c-axis length has been artificially compressed in this picture to make the distant domains more visible.

Metrics