Abstract

Planar LiNbO3 waveguides with a 5-mm tapered region and a 10-mm homogeneous slab waveguide region were fabricated by a double proton-exchange process. The 4-μm waveguide entrance gives rise to a coupling efficiency as high as 93%; the precise control of the depth profile of the tapered region results in a low 1-dB power transfer loss from the tapered region to the 0.4-μm-depth working region. The techniques developed provide an alternative to prism coupling into planar waveguides in Čerenkov second-harmonic generation applications.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example,H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
    [CrossRef]
  2. T. Taniuchi, K. Yamamoto, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), paper WP-6.
  3. K. Mizuuchi, K. Yamamoto, T. Taniuchi, Electron. Lett. 26, 1992 (1990).
  4. See, for example,E. Garmire, T. Mcmathon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
    [CrossRef]
  5. J. M. White, P. F. Heidrich, Appl. Opt. 15, 151 (1976).
    [CrossRef] [PubMed]
  6. D. Marcuse, Bell Syst. Tech. J. 48, 273 (1969).
  7. R. K. Winn, J. H. Harris, IEEE Trans. Microwave Theory Tech. MTT-23, 92 (1975).
    [CrossRef]
  8. A. R. Nelson, Appl. Opt. 14, 3012 (1975).
    [CrossRef]
  9. W. K. Burns, A. F. Milton, A. B. Lee, Appl. Phys. Lett. 30, 28 (1977).
    [CrossRef]
  10. K. Yamamoto, T. Taniuchi, J. Appl. Phys. 70, 6663 (1991).
    [CrossRef]
  11. For discussions on lens performance from a practical point of view, see, for example,Melles Griot Catalog 1995 (Melles Griot, Irvine, Calif.), Chaps. 1 and 2.
  12. E. Garmire, H. Stoll, A. Yariv, Appl. Phys. Lett. 21, 87 (1972).
    [CrossRef]
  13. H. P. Weber, F. A. Dunn, W. N. Leibolt, Appl. Opt. 12, 755 (1973).
    [CrossRef] [PubMed]
  14. T. Tamir, H. L. Bertoni, Appl. Phys. Lett. 61, 1397 (1971).
  15. A. Y. Yan, Appl. Phys. Lett. 42, 633(1983).
    [CrossRef]

1991

See, for example,H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
[CrossRef]

K. Yamamoto, T. Taniuchi, J. Appl. Phys. 70, 6663 (1991).
[CrossRef]

1990

K. Mizuuchi, K. Yamamoto, T. Taniuchi, Electron. Lett. 26, 1992 (1990).

1983

A. Y. Yan, Appl. Phys. Lett. 42, 633(1983).
[CrossRef]

1980

See, for example,E. Garmire, T. Mcmathon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
[CrossRef]

1977

W. K. Burns, A. F. Milton, A. B. Lee, Appl. Phys. Lett. 30, 28 (1977).
[CrossRef]

1976

1975

A. R. Nelson, Appl. Opt. 14, 3012 (1975).
[CrossRef]

R. K. Winn, J. H. Harris, IEEE Trans. Microwave Theory Tech. MTT-23, 92 (1975).
[CrossRef]

1973

1972

E. Garmire, H. Stoll, A. Yariv, Appl. Phys. Lett. 21, 87 (1972).
[CrossRef]

1971

T. Tamir, H. L. Bertoni, Appl. Phys. Lett. 61, 1397 (1971).

1969

D. Marcuse, Bell Syst. Tech. J. 48, 273 (1969).

Bass, M.

See, for example,E. Garmire, T. Mcmathon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
[CrossRef]

Bertoni, H. L.

T. Tamir, H. L. Bertoni, Appl. Phys. Lett. 61, 1397 (1971).

Burns, W. K.

W. K. Burns, A. F. Milton, A. B. Lee, Appl. Phys. Lett. 30, 28 (1977).
[CrossRef]

Dunn, F. A.

Garmire, E.

See, for example,E. Garmire, T. Mcmathon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
[CrossRef]

E. Garmire, H. Stoll, A. Yariv, Appl. Phys. Lett. 21, 87 (1972).
[CrossRef]

Harris, J. H.

R. K. Winn, J. H. Harris, IEEE Trans. Microwave Theory Tech. MTT-23, 92 (1975).
[CrossRef]

Heidrich, P. F.

Lee, A. B.

W. K. Burns, A. F. Milton, A. B. Lee, Appl. Phys. Lett. 30, 28 (1977).
[CrossRef]

Leibolt, W. N.

Marcuse, D.

D. Marcuse, Bell Syst. Tech. J. 48, 273 (1969).

Mcmathon, T.

See, for example,E. Garmire, T. Mcmathon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
[CrossRef]

Milton, A. F.

W. K. Burns, A. F. Milton, A. B. Lee, Appl. Phys. Lett. 30, 28 (1977).
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, K. Yamamoto, T. Taniuchi, Electron. Lett. 26, 1992 (1990).

Nelson, A. R.

Stoll, H.

E. Garmire, H. Stoll, A. Yariv, Appl. Phys. Lett. 21, 87 (1972).
[CrossRef]

Tamada, H.

See, for example,H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
[CrossRef]

Tamir, T.

T. Tamir, H. L. Bertoni, Appl. Phys. Lett. 61, 1397 (1971).

Taniuchi, T.

K. Yamamoto, T. Taniuchi, J. Appl. Phys. 70, 6663 (1991).
[CrossRef]

K. Mizuuchi, K. Yamamoto, T. Taniuchi, Electron. Lett. 26, 1992 (1990).

T. Taniuchi, K. Yamamoto, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), paper WP-6.

Weber, H. P.

White, J. M.

Winn, R. K.

R. K. Winn, J. H. Harris, IEEE Trans. Microwave Theory Tech. MTT-23, 92 (1975).
[CrossRef]

Yamamoto, K.

K. Yamamoto, T. Taniuchi, J. Appl. Phys. 70, 6663 (1991).
[CrossRef]

K. Mizuuchi, K. Yamamoto, T. Taniuchi, Electron. Lett. 26, 1992 (1990).

T. Taniuchi, K. Yamamoto, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), paper WP-6.

Yan, A. Y.

A. Y. Yan, Appl. Phys. Lett. 42, 633(1983).
[CrossRef]

Yariv, A.

E. Garmire, H. Stoll, A. Yariv, Appl. Phys. Lett. 21, 87 (1972).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Tamir, H. L. Bertoni, Appl. Phys. Lett. 61, 1397 (1971).

A. Y. Yan, Appl. Phys. Lett. 42, 633(1983).
[CrossRef]

W. K. Burns, A. F. Milton, A. B. Lee, Appl. Phys. Lett. 30, 28 (1977).
[CrossRef]

E. Garmire, H. Stoll, A. Yariv, Appl. Phys. Lett. 21, 87 (1972).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, Bell Syst. Tech. J. 48, 273 (1969).

Electron. Lett.

K. Mizuuchi, K. Yamamoto, T. Taniuchi, Electron. Lett. 26, 1992 (1990).

IEEE J. Quantum Electron

See, for example,E. Garmire, T. Mcmathon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
[CrossRef]

See, for example,H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

R. K. Winn, J. H. Harris, IEEE Trans. Microwave Theory Tech. MTT-23, 92 (1975).
[CrossRef]

J. Appl. Phys.

K. Yamamoto, T. Taniuchi, J. Appl. Phys. 70, 6663 (1991).
[CrossRef]

Other

For discussions on lens performance from a practical point of view, see, for example,Melles Griot Catalog 1995 (Melles Griot, Irvine, Calif.), Chaps. 1 and 2.

T. Taniuchi, K. Yamamoto, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), paper WP-6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Exchange depth and immersion time distributions in the transition region of the tapered waveguides. The squares represent the measured data, which are best fitted by the dashed curve.

Fig. 2
Fig. 2

Temperature gradient of the wafers across the acid and the air. The acid–air interface is located at the 0-mm position; the acid bottom at the hot plate is at the 15-mm position. The wafer exposed to air is above the 0-mm position.

Fig. 3
Fig. 3

Intensity profiles of the 0.4- and 4-μm waveguides. The circles and the squares are the measured data of the 0.4- and 4-μm homogeneous waveguides, respectively; the curves are the corresponding theoretical intensity profiles of the lowest waveguide modes in the step-index waveguide.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d ( t , T ) = 1.01 × 10 5 t exp ( C / T ) .

Metrics