Abstract

Amplitude-shift keying modulation of solitons is subject to limited capacity because of Gordon–Haus noise and soliton interaction. It is shown theoretically that the capacity can be increased beyond this limit by recoding of the modulation. The design strategy is to make the pulse train strongly interacting, which reduces the Gordon–Haus noise, and to apply subband coding to counter the effects of the information dispersion caused by the strong intersoliton interaction; the subband-coded complex is pulse-position modulated onto the soliton stream. An example shows a 2.35-times improvement in capacity at the transatlantic distance of 6000 km with this method.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon, H. A. Haus, Opt. Lett. 11, 665 (1986).
    [CrossRef] [PubMed]
  2. L. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
    [CrossRef] [PubMed]
  3. A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).
    [CrossRef] [PubMed]
  4. N. J. Smith, K. J. Blow, W. J. Firth, K. Smith, Opt. Commun. 102, 324 (1993).
    [CrossRef]
  5. J. M. Arnold, IMA J. Appl. Math. 52, 123 (1994).
    [CrossRef]
  6. J. M. Arnold, Proc. Inst. Electr. Eng. Pt. J 140, 359 (1993).
  7. S. Haykin, Digital Communications (Wiley, New York, 1990), Chap. 6, pp. 245–251.
  8. S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
    [CrossRef]

1994

J. M. Arnold, IMA J. Appl. Math. 52, 123 (1994).
[CrossRef]

1993

J. M. Arnold, Proc. Inst. Electr. Eng. Pt. J 140, 359 (1993).

N. J. Smith, K. J. Blow, W. J. Firth, K. Smith, Opt. Commun. 102, 324 (1993).
[CrossRef]

1992

L. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
[CrossRef] [PubMed]

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

1991

1986

Arnold, J. M.

J. M. Arnold, IMA J. Appl. Math. 52, 123 (1994).
[CrossRef]

J. M. Arnold, Proc. Inst. Electr. Eng. Pt. J 140, 359 (1993).

Blow, K. J.

N. J. Smith, K. J. Blow, W. J. Firth, K. Smith, Opt. Commun. 102, 324 (1993).
[CrossRef]

Chernikov, S. V.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

Dianov, E. M.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

Evangelides, S. G.

Firth, W. J.

N. J. Smith, K. J. Blow, W. J. Firth, K. Smith, Opt. Commun. 102, 324 (1993).
[CrossRef]

Gordon, J. P.

Haus, H. A.

Haykin, S.

S. Haykin, Digital Communications (Wiley, New York, 1990), Chap. 6, pp. 245–251.

Lai, Y.

Mamyshev, P. V.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

Mecozzi, A.

Mollenauer, L.

Moores, J. D.

Smith, K.

N. J. Smith, K. J. Blow, W. J. Firth, K. Smith, Opt. Commun. 102, 324 (1993).
[CrossRef]

Smith, N. J.

N. J. Smith, K. J. Blow, W. J. Firth, K. Smith, Opt. Commun. 102, 324 (1993).
[CrossRef]

Taylor, J. R.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

Electron. Lett.

S. V. Chernikov, J. R. Taylor, P. V. Mamyshev, E. M. Dianov, Electron. Lett. 28, 931 (1992).
[CrossRef]

IMA J. Appl. Math.

J. M. Arnold, IMA J. Appl. Math. 52, 123 (1994).
[CrossRef]

Opt. Commun.

N. J. Smith, K. J. Blow, W. J. Firth, K. Smith, Opt. Commun. 102, 324 (1993).
[CrossRef]

Opt. Lett.

Proc. Inst. Electr. Eng. Pt. J

J. M. Arnold, Proc. Inst. Electr. Eng. Pt. J 140, 359 (1993).

Other

S. Haykin, Digital Communications (Wiley, New York, 1990), Chap. 6, pp. 245–251.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Reduction of GH noise in an interacting soliton train relative to its values for an isolated soliton.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d x 2 q k = 4 exp ( T ) { exp [ ( q k + 1 q k ) ] exp [ ( q k q k 1 ) ] } ,
d x 2 q k = 4 exp ( T ) ( q k + 1 2 q k + q k 1 ) .
q k = Q ( β ) exp ( i k β ) exp ( i λ x ) ,
λ 2 = 8 exp ( T ) ( 1 cos β )
λ = ± L 1 sin β / 2 ,
q k ( x ) = 1 2 π × π π { P ( β ) sin [ λ ( β ) x ] + Q ( β ) cos [ λ ( β ) x ] } exp ( i k β ) d β ,
q k ( x ) = q 0 ( 0 ) J 2 k ( x / L ) ,
q k ( x ) = j Z J 2 ( k j ) ( x / L ) q j ( 0 ) .
q k ( x , x ' ) 2 = 1 2 π σ p 2 ( x ' ) × π π λ 2 ( β ) sin 2 [ λ ( β ) ( x x ' ) ] d β .
σ q 2 ( x ) = 0 x q k ( x , x ' ) 2 d x ' = σ p 2 0 x ( x x ' ) 2 J 0 ( 2 x ' / L ) d x ' ,
σ p 2 ( x ) = σ p 2 x 3 / 3     ( 2 x L ) ,
H ( β ) = cos [ λ ( β ) x ] = cos [ ( x / L ) sin ( β / 2 ) ] .

Metrics