Abstract

We demonstrate an all-fiber acousto-optic tunable filter based on two-spatial-mode coupling, with improved ruggedness and efficiency, by using a new acoustic-transducer design. We use a rigorous modeling of the flexural acoustic wave to analyze the mode coupling with better accuracy. Using the acousto-optic tunable filter, we demonstrate a novel all-fiber tunable laser with a tuning range of more than 20 nm and a linewidth of 0.2 nm.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1135 (1994).
  2. B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, Opt. Lett. 11, 389 (1986).
    [CrossRef] [PubMed]
  3. H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
    [CrossRef]
  4. J. N. Blake, P. Siemsen, presented at Ninth Optical Fiber Sensors Conference, Firenze, Italy, 1993.
  5. D. Ostling, H. E. Engan, Opt. Lett. 20, 1247 (1995).
    [CrossRef] [PubMed]
  6. J. N. Blake, B. Y. Kim, H. E. Engan, H. J. Shaw, Opt. Lett. 12, 281 (1987).
    [CrossRef] [PubMed]
  7. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1987), Chap. 6.
  8. O. Lisboa, J. N. Blake, J. E. B. Oliveira, S. L. A. Cararra, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 17 (1990).
  9. P. F. Wysocki, M. J. K. Digonnet, B. Y. Kim, Opt. Lett. 15, 273 (1990).
    [CrossRef] [PubMed]
  10. H. Sabert, E. BrinkmeyerJ. Lightwave Technol. 12, 1360 (1994).
    [CrossRef]

1995 (1)

1994 (2)

H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1135 (1994).

H. Sabert, E. BrinkmeyerJ. Lightwave Technol. 12, 1360 (1994).
[CrossRef]

1990 (2)

O. Lisboa, J. N. Blake, J. E. B. Oliveira, S. L. A. Cararra, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 17 (1990).

P. F. Wysocki, M. J. K. Digonnet, B. Y. Kim, Opt. Lett. 15, 273 (1990).
[CrossRef] [PubMed]

1988 (1)

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

1987 (1)

1986 (1)

Blake, J. N.

O. Lisboa, J. N. Blake, J. E. B. Oliveira, S. L. A. Cararra, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 17 (1990).

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

J. N. Blake, B. Y. Kim, H. E. Engan, H. J. Shaw, Opt. Lett. 12, 281 (1987).
[CrossRef] [PubMed]

B. Y. Kim, J. N. Blake, H. E. Engan, H. J. Shaw, Opt. Lett. 11, 389 (1986).
[CrossRef] [PubMed]

J. N. Blake, P. Siemsen, presented at Ninth Optical Fiber Sensors Conference, Firenze, Italy, 1993.

Brinkmeyer, E.

H. Sabert, E. BrinkmeyerJ. Lightwave Technol. 12, 1360 (1994).
[CrossRef]

Cararra, S. L. A.

O. Lisboa, J. N. Blake, J. E. B. Oliveira, S. L. A. Cararra, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 17 (1990).

Digonnet, M. J. K.

Engan, H. E.

Herrmann, H.

H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1135 (1994).

Kim, B. Y.

Lisboa, O.

O. Lisboa, J. N. Blake, J. E. B. Oliveira, S. L. A. Cararra, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 17 (1990).

Oliveira, J. E. B.

O. Lisboa, J. N. Blake, J. E. B. Oliveira, S. L. A. Cararra, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 17 (1990).

Ostling, D.

Sabert, H.

H. Sabert, E. BrinkmeyerJ. Lightwave Technol. 12, 1360 (1994).
[CrossRef]

Schafer, K.

H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1135 (1994).

Shaw, H. J.

Siemsen, P.

J. N. Blake, P. Siemsen, presented at Ninth Optical Fiber Sensors Conference, Firenze, Italy, 1993.

Sohler, W.

H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1135 (1994).

Wysocki, P. F.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1987), Chap. 6.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1987), Chap. 6.

IEEE Photon. Technol. Lett. (1)

H. Herrmann, K. Schafer, W. Sohler, IEEE Photon. Technol. Lett. 11, 1135 (1994).

J. Lightwave Technol. (2)

H. E. Engan, B. Y. Kim, J. N. Blake, H. J. Shaw, J. Lightwave Technol. 6, 428 (1988).
[CrossRef]

H. Sabert, E. BrinkmeyerJ. Lightwave Technol. 12, 1360 (1994).
[CrossRef]

Opt. Lett. (4)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

O. Lisboa, J. N. Blake, J. E. B. Oliveira, S. L. A. Cararra, Proc. Soc. Photo-Opt. Instrum. Eng. 1267, 17 (1990).

Other (2)

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1987), Chap. 6.

J. N. Blake, P. Siemsen, presented at Ninth Optical Fiber Sensors Conference, Firenze, Italy, 1993.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Calculated values of χ for silica glass fiber as a function of the ratio of the fiber diameter to the acoustic wavelength, D/λa,. The transverse acoustic displacement is assumed to be in the y direction. (b) The function Y(V) calculated for a circular-core step-index fiber.

Fig. 2
Fig. 2

Schematic diagram of the all-fiber AOTF with a new acoustic transducer.

Fig. 3
Fig. 3

Measured center wavelength of the notch filter as a function of the acoustic frequency. The theoretical curve shows good agreement with the experimental data (circles); a circular-core step-index profile with a central dip is assumed.

Fig. 4
Fig. 4

Spectral response of the AOTF measured with an unpolarized broadband light at fa = 2.726 MHz (•) and fa = 3.100 MHz (◦).

Fig. 5
Fig. 5

(a) Schematic diagram of the all-fiber tunable laser: DM’s, dichroic mirrors; MC, static mode converter; SMF, single-mode fiber. (b) Spectrum of the laser output tuned by variation of the acoustic frequency.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P ( L ) = γ 2 γ 2 + ( θ / 2 ) 2 sin 2 { [ γ 2 + ( θ / 2 ) 2 ] 1 / 2 L } .
γ = δ a ( 1 χ ) a Y ( V ) L B λ a 2 .
( Δ λ λ ) 3 dB 0.8 m L B λ d L B ,

Metrics