Abstract

The switching characteristics of a two-core optical fiber can be described by the beating of the even and odd modes of the composite two-core structure. It is shown that the group-delay difference between these two modes can be as large as 10 ps/m. This intermodal dispersion sets a limit on the shortest duration of the optical pulse that can be switched effectively in devices that use long lengths of two-core fibers, such as wavelength-division multiplexers, polarization splitters, and nonlinear directional couplers.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Schiffner, H. Schneider, G. Schöner, Appl. Phys. 23, 41 (1980).
    [CrossRef]
  2. Y. Murakami, S. Sudo, Appl. Opt. 20, 417 (1981).
    [CrossRef] [PubMed]
  3. G. Meltz, J. R. Dunphy, W. W. Morey, E. Snitzer, Appl. Opt. 22, 464, (1983).
    [CrossRef] [PubMed]
  4. K. Kitayama, Y. Ishida, J. Opt. Soc. Am. A 2, 90 (1985).
    [CrossRef]
  5. G.-D. Peng, T. Tjugiarto, P. L. Chu, Appl. Opt. 30, 632 (1991).
    [CrossRef] [PubMed]
  6. S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saiffi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
    [CrossRef]
  7. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, P. W. Smith, Opt. Lett. 13, 904 (1988).
    [CrossRef] [PubMed]
  8. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 387.
  9. A. W. Snyder, J. Opt. Soc. Am. 62, 1267 (1972).
    [CrossRef]
  10. A. Ankiewicz, A. W. Snyder, X.-H. Zheng, J. Lightwave Technol. LT-4, 1317 (1986).
    [CrossRef]

1991 (1)

1988 (1)

1987 (1)

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saiffi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

1986 (1)

A. Ankiewicz, A. W. Snyder, X.-H. Zheng, J. Lightwave Technol. LT-4, 1317 (1986).
[CrossRef]

1985 (1)

1983 (1)

1981 (1)

1980 (1)

G. Schiffner, H. Schneider, G. Schöner, Appl. Phys. 23, 41 (1980).
[CrossRef]

1972 (1)

Andrejco, M. J.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saiffi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Ankiewicz, A.

A. Ankiewicz, A. W. Snyder, X.-H. Zheng, J. Lightwave Technol. LT-4, 1317 (1986).
[CrossRef]

Chu, P. L.

Dunphy, J. R.

Friberg, S. R.

S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, P. W. Smith, Opt. Lett. 13, 904 (1988).
[CrossRef] [PubMed]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saiffi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Ishida, Y.

Kitayama, K.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 387.

Meltz, G.

Morey, W. W.

Murakami, Y.

Oliver, M. K.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saiffi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Peng, G.-D.

Saiffi, M. A.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saiffi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Schiffner, G.

G. Schiffner, H. Schneider, G. Schöner, Appl. Phys. 23, 41 (1980).
[CrossRef]

Schneider, H.

G. Schiffner, H. Schneider, G. Schöner, Appl. Phys. 23, 41 (1980).
[CrossRef]

Schöner, G.

G. Schiffner, H. Schneider, G. Schöner, Appl. Phys. 23, 41 (1980).
[CrossRef]

Sfez, B. G.

Silberberg, Y.

S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, P. W. Smith, Opt. Lett. 13, 904 (1988).
[CrossRef] [PubMed]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saiffi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Smith, P. W.

S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, P. W. Smith, Opt. Lett. 13, 904 (1988).
[CrossRef] [PubMed]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saiffi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

Snitzer, E.

Snyder, A. W.

A. Ankiewicz, A. W. Snyder, X.-H. Zheng, J. Lightwave Technol. LT-4, 1317 (1986).
[CrossRef]

A. W. Snyder, J. Opt. Soc. Am. 62, 1267 (1972).
[CrossRef]

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 387.

Sudo, S.

Tjugiarto, T.

Weiner, A. M.

Zheng, X.-H.

A. Ankiewicz, A. W. Snyder, X.-H. Zheng, J. Lightwave Technol. LT-4, 1317 (1986).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (1)

G. Schiffner, H. Schneider, G. Schöner, Appl. Phys. 23, 41 (1980).
[CrossRef]

Appl. Phys. Lett. (1)

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saiffi, P. W. Smith, Appl. Phys. Lett. 51, 1135 (1987).
[CrossRef]

J. Lightwave Technol. (1)

A. Ankiewicz, A. W. Snyder, X.-H. Zheng, J. Lightwave Technol. LT-4, 1317 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Other (1)

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983), Chap. 18, p. 387.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

When the transit-time difference |δτ| of the two normal modes of a two-core fiber is longer than the pulse duration, the two modes are displaced in time and can no longer interfere to produce the mode-coupling effect.

Fig. 2
Fig. 2

Normalized coupling coefficient as a function of V for several values of core separation s/ρ. s/ρ = 2.0 represents two touching cores.

Fig. 3
Fig. 3

Normalized group-delay difference δτ̄ as a function of V for several values of core separation s/ρ.

Fig. 4
Fig. 4

Factor G as a function of V for several values of core separation s/ρ.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

β ± = β ± C ,
C = ( 2 Δ ) 1 / 2 ρ U 2 V 3 K 0 ( W s / ρ ) K 1 2 ( W ) ,
L c = π β + - β - = π 2 C .
τ ± = 1 c d β ± d k ,
δ τ = τ + - τ - = 2 c d C d k .
δ τ = 2 n 1 Δ c δ τ ¯ ,
δ τ ¯ = C ¯ G ,
C ¯ = 2 ρ ( 2 Δ ) 1 / 2 V C ,
G = [ 2 + 2 W K 0 ( W ) K 1 ( W ) - W s ρ K 1 ( W s / ρ ) K 0 ( W s / ρ ) ] × [ 1 + U 2 W 2 K 0 2 ( W ) K 1 2 ( W ) ] - [ 1 + 2 K 0 2 ( W ) K 1 2 ( W ) ] .
δ τ c = λ 2 c G ,

Metrics