Abstract

We describe a hidden mechanism for stable mode locking of solid-state lasers that uses a slow saturable absorber. The physical origin of this novel mechanism is attributed to the transformation of the saturable-absorber-induced self-frequency shift into a fast nonlinear loss because the absorption line is off resonance. Based on the exact solution of the governing steady-state equation, we investigate in detail the dependence of the pulse parameters on the laser control parameters in connection with the stability region of the solution.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Herrmann, B. Wilhelmi, Lasers for Ultrashort Light Pulses (North-Holland, Amsterdam, 1987), Chaps. 6 and 7, pp. 159 ff.
  2. G. H. New, Opt. Commun. 6, 188 (1972).
    [CrossRef]
  3. H. A. Haus, IEEE J. Quantum Electron. QE-13, 736 (1975).
    [CrossRef]
  4. O. E. Martinez, R. L. Fork, G. P. Gordon, J. Opt. Soc. Am. B 2, 753 (1985).
    [CrossRef]
  5. J. C. Chen, H. A. Haus, E. P. Ippen, IEEE J. Quantum Electron. 29, 1228 (1993).
    [CrossRef]
  6. J. Herrmann, J. Opt. Soc. Am. B 11, 498 (1994).
    [CrossRef]
  7. J. Herrmann, Opt. Commun. 98, 111 (1993).
    [CrossRef]
  8. D. Kopf, W. J. Weingarten, L. Brovellis, M. Kame, U. Keller, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD22.
  9. N. V. Rizvi, P. M. W. French, J. R. Taylor, D. J. Delfyett, L. T. Florez, Opt. Lett. 18, 983 (1993).
    [CrossRef] [PubMed]

1994 (1)

1993 (3)

N. V. Rizvi, P. M. W. French, J. R. Taylor, D. J. Delfyett, L. T. Florez, Opt. Lett. 18, 983 (1993).
[CrossRef] [PubMed]

J. C. Chen, H. A. Haus, E. P. Ippen, IEEE J. Quantum Electron. 29, 1228 (1993).
[CrossRef]

J. Herrmann, Opt. Commun. 98, 111 (1993).
[CrossRef]

1985 (1)

1975 (1)

H. A. Haus, IEEE J. Quantum Electron. QE-13, 736 (1975).
[CrossRef]

1972 (1)

G. H. New, Opt. Commun. 6, 188 (1972).
[CrossRef]

Brovellis, L.

D. Kopf, W. J. Weingarten, L. Brovellis, M. Kame, U. Keller, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD22.

Chen, J. C.

J. C. Chen, H. A. Haus, E. P. Ippen, IEEE J. Quantum Electron. 29, 1228 (1993).
[CrossRef]

Delfyett, D. J.

Florez, L. T.

Fork, R. L.

French, P. M. W.

Gordon, G. P.

Haus, H. A.

J. C. Chen, H. A. Haus, E. P. Ippen, IEEE J. Quantum Electron. 29, 1228 (1993).
[CrossRef]

H. A. Haus, IEEE J. Quantum Electron. QE-13, 736 (1975).
[CrossRef]

Herrmann, J.

J. Herrmann, J. Opt. Soc. Am. B 11, 498 (1994).
[CrossRef]

J. Herrmann, Opt. Commun. 98, 111 (1993).
[CrossRef]

J. Herrmann, B. Wilhelmi, Lasers for Ultrashort Light Pulses (North-Holland, Amsterdam, 1987), Chaps. 6 and 7, pp. 159 ff.

Ippen, E. P.

J. C. Chen, H. A. Haus, E. P. Ippen, IEEE J. Quantum Electron. 29, 1228 (1993).
[CrossRef]

Kame, M.

D. Kopf, W. J. Weingarten, L. Brovellis, M. Kame, U. Keller, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD22.

Keller, U.

D. Kopf, W. J. Weingarten, L. Brovellis, M. Kame, U. Keller, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD22.

Kopf, D.

D. Kopf, W. J. Weingarten, L. Brovellis, M. Kame, U. Keller, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD22.

Martinez, O. E.

New, G. H.

G. H. New, Opt. Commun. 6, 188 (1972).
[CrossRef]

Rizvi, N. V.

Taylor, J. R.

Weingarten, W. J.

D. Kopf, W. J. Weingarten, L. Brovellis, M. Kame, U. Keller, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD22.

Wilhelmi, B.

J. Herrmann, B. Wilhelmi, Lasers for Ultrashort Light Pulses (North-Holland, Amsterdam, 1987), Chaps. 6 and 7, pp. 159 ff.

IEEE J. Quantum Electron. (2)

H. A. Haus, IEEE J. Quantum Electron. QE-13, 736 (1975).
[CrossRef]

J. C. Chen, H. A. Haus, E. P. Ippen, IEEE J. Quantum Electron. 29, 1228 (1993).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

G. H. New, Opt. Commun. 6, 188 (1972).
[CrossRef]

J. Herrmann, Opt. Commun. 98, 111 (1993).
[CrossRef]

Opt. Lett. (1)

Other (2)

J. Herrmann, B. Wilhelmi, Lasers for Ultrashort Light Pulses (North-Holland, Amsterdam, 1987), Chaps. 6 and 7, pp. 159 ff.

D. Kopf, W. J. Weingarten, L. Brovellis, M. Kame, U. Keller, in Conference on Lasers and Electro-Optics, Vol. 8 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), postdeadline paper CPD22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) SAM coefficient Re(cN1) and (b) normalized FWHM pulse width τ/τg over spectral detuning Δga for different bandwidth ratios τa/τg = 1 (curve 1), τa/τg = 2 (curve 2), and τa/τg = 3 (curve 3).

Fig. 2
Fig. 2

(a) Laser carrier frequency shift Δg and (b) chirp parameter β over spectral detuning Δga for different bandwidths ratios τa/τg as in Fig. 1.

Fig. 3
Fig. 3

Normalized FWHM pulse width τ/τg (a) over normalized second-order dispersion parameter D 2 and (b) over the small-signal absorber loss α for different bandwidth ratios τa/τg as in Fig. 1.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ψ k + 1 ( η ) = r D ^ ( η ) N ^ 2 ( ψ k 2 ) D ^ ( η ) ψ k ( η ) .
D ^ = exp ( g L g 1 + L g τ g η + i D 2 2 η 2 ) ,
N ^ = exp { - i κ 2 ψ 2 - α L a 1 + L a τ a η × exp [ - Re ( L a ) - η ψ ( η ) 2 d η U a ] } ,
{ c 2 2 η 2 + c 1 η + c 0 + c N 1 ψ 2 + c N 2 - η ψ ( η ) 2 d η + c N 3 [ - η ψ ( η ) 2 d η ] 2 + c N 4 - η ψ ( η ) 2 d η η } ψ ( η ) = 0 .
Ω 1 ( c 2 / τ L ) 2 + c 0 + c N 2 v 0 2 τ L + 2 c N 3 v 0 4 τ L 2 + Ω 0 c N 4 v 0 2 = 0 ,
Ω 0 ( c 1 / τ L ) + c N 2 v 0 2 τ L + 2 c N 3 v 0 4 τ L 2 + Ω 0 c N 4 v 0 2 = 0 ,
- Ω 2 ( c 2 / τ L 2 ) + c N 1 v 0 2 - c N 3 v 0 4 τ L 2 - Ω 0 c N 4 v 0 2 = 0 ,
W Re ( c N 1 ) = Re ( c N 1 - Ω 0 c N 4 ) - { Re 2 ( c N 1 - Ω 0 c N 4 ) - 4 Re [ Ω 2 ( 1 + i D ) ] Re ( c N 3 ) } 1 / 2 2 Re ( c N 3 ) ,
μ = Re ( L g ) u - Q u [ 1 + Re ( L g ) u ] × [ Q u + W Re ( c N 2 ) Re ( c 2 ) Re ( c N 1 ) Γ P ] ,
Re [ Ω 1 ( 1 + i D ) + Ω 0 W Re ( c N 1 ) c N 4 ] > 0.

Metrics