Abstract

A novel light-emitting probe for scanning near-field optical microscopy is investigated theoretically. The three-dimensional vectorial Helmholtz equation is solved for the new probe geometry by using the multiple multipole method. The novel probe consists of a dielectric tip that is entirely metal coated. It provides a single near-field spot that can be smaller than 20 nm (FWHM). The dependence on tip radius, taper angle, and metal thickness in front of the tip is investigated for the power transmission through the probe as well as for the spot size.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
    [CrossRef]
  2. E. Betzig, J. K. Trautman, Science 257, 189 (1984).
    [CrossRef]
  3. D. W. Pohl, in Scanning Tunneling Microscopy, R. Wiesendanger, H. J. Güntherodt, eds., Vol. 28 of Springer Series in Surface Sciences (Springer-Verlag, Berlin, 1992), pp. 233–271.
    [CrossRef]
  4. U. Duerig, D. W. Pohl, F. Rohner, J. Appl. Phys. 59, 3318 (1986).
    [CrossRef]
  5. L. Novotny, D. W. Pohl, in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1995).
  6. Ch. Hafner, The Generalized Multiple Multipole Technique for Computational Electromagnetics (Artech, Boston, Mass., 1990).
  7. Ch. Hafner, L. H. Bonholdt, The 3d Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993).
  8. L. Novotny, D. W. Pohl, P. Regli, J. Opt. Soc. Am. A 11, 1768 (1994).
    [CrossRef]
  9. L. Novotny, Ch. Hafner, Phys. Rev. E 50, 4094 (1994).
    [CrossRef]
  10. C. J. Bouwkamp, Philips Res. Rep. 5, 321 (1950).

1994 (2)

1986 (1)

U. Duerig, D. W. Pohl, F. Rohner, J. Appl. Phys. 59, 3318 (1986).
[CrossRef]

1984 (2)

D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

E. Betzig, J. K. Trautman, Science 257, 189 (1984).
[CrossRef]

1950 (1)

C. J. Bouwkamp, Philips Res. Rep. 5, 321 (1950).

Betzig, E.

E. Betzig, J. K. Trautman, Science 257, 189 (1984).
[CrossRef]

Bonholdt, L. H.

Ch. Hafner, L. H. Bonholdt, The 3d Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993).

Bouwkamp, C. J.

C. J. Bouwkamp, Philips Res. Rep. 5, 321 (1950).

Denk, W.

D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

Duerig, U.

U. Duerig, D. W. Pohl, F. Rohner, J. Appl. Phys. 59, 3318 (1986).
[CrossRef]

Hafner, Ch.

L. Novotny, Ch. Hafner, Phys. Rev. E 50, 4094 (1994).
[CrossRef]

Ch. Hafner, The Generalized Multiple Multipole Technique for Computational Electromagnetics (Artech, Boston, Mass., 1990).

Ch. Hafner, L. H. Bonholdt, The 3d Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993).

Lanz, M.

D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

Novotny, L.

L. Novotny, D. W. Pohl, P. Regli, J. Opt. Soc. Am. A 11, 1768 (1994).
[CrossRef]

L. Novotny, Ch. Hafner, Phys. Rev. E 50, 4094 (1994).
[CrossRef]

L. Novotny, D. W. Pohl, in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1995).

Pohl, D. W.

L. Novotny, D. W. Pohl, P. Regli, J. Opt. Soc. Am. A 11, 1768 (1994).
[CrossRef]

U. Duerig, D. W. Pohl, F. Rohner, J. Appl. Phys. 59, 3318 (1986).
[CrossRef]

D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

D. W. Pohl, in Scanning Tunneling Microscopy, R. Wiesendanger, H. J. Güntherodt, eds., Vol. 28 of Springer Series in Surface Sciences (Springer-Verlag, Berlin, 1992), pp. 233–271.
[CrossRef]

L. Novotny, D. W. Pohl, in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1995).

Regli, P.

Rohner, F.

U. Duerig, D. W. Pohl, F. Rohner, J. Appl. Phys. 59, 3318 (1986).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, Science 257, 189 (1984).
[CrossRef]

Appl. Phys. Lett. (1)

D. W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
[CrossRef]

J. Appl. Phys. (1)

U. Duerig, D. W. Pohl, F. Rohner, J. Appl. Phys. 59, 3318 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

Philips Res. Rep. (1)

C. J. Bouwkamp, Philips Res. Rep. 5, 321 (1950).

Phys. Rev. E (1)

L. Novotny, Ch. Hafner, Phys. Rev. E 50, 4094 (1994).
[CrossRef]

Science (1)

E. Betzig, J. K. Trautman, Science 257, 189 (1984).
[CrossRef]

Other (4)

D. W. Pohl, in Scanning Tunneling Microscopy, R. Wiesendanger, H. J. Güntherodt, eds., Vol. 28 of Springer Series in Surface Sciences (Springer-Verlag, Berlin, 1992), pp. 233–271.
[CrossRef]

L. Novotny, D. W. Pohl, in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E (Kluwer, Dordrecht, The Netherlands, 1995).

Ch. Hafner, The Generalized Multiple Multipole Technique for Computational Electromagnetics (Artech, Boston, Mass., 1990).

Ch. Hafner, L. H. Bonholdt, The 3d Electrodynamic Wave Simulator (Wiley, Chichester, UK, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Contour lines of constant |E|2 on three perpendicular planes through the center of the probe (factor of 2 between successive lines). α = 30°, R = 10 nm, D = 5 nm, and a gap width of 20 nm.

Fig. 2
Fig. 2

Near fields of three different probes evaluated on a plane 1 nm in front of the probes: (a) aperture SNOM probe with 50-nm aperture diameter and α = 10°; (b) entirely coated SNOM probe with α = 30°, R = 10 nm, and D = 3 nm; (c) entirely coated SNOM probe with α = 75°, R = 10 nm, and D = 3 nm. Contour lines of constant |E|2 (factor of 21/2 between successive lines).

Fig. 3
Fig. 3

Decay along (a) the x direction of Fig. 1 and (b) the symmetry axis for D = 3 nm and R = 10 nm. 50-nm aperture SNOM probe with α = 10° (dotted curves) and entirely coated SNOM probes with α = 15° (solid curves), α = 45° (dashed curves), and α = 80° (dashed–dotted curves).

Fig. 4
Fig. 4

(a) Spot size for R = 10 nm as a function of taper angle, D = 3 nm (solid curve), D = 5 nm (dashed curve), and D = 10 nm (dotted curve). (b) Power transmission for D = 3 nm as a function of taper angle. R = 5 nm (solid curve) and R = 10 nm (dashed curve).

Metrics