Abstract

Convex microlenses with diameters of 10–100 μm and focal lengths longer than ~5 μm have been produced in chalcogenide glasses with light illumination only. In As2S3 glass the lens can be formed with exposure of focused light from a 10-mW He–Ne laser for 100 s. The fabrication process is athermal, and the lens can be erased by annealing.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, Tokyo, 1984), pp. 8, 107.
  2. H. Nishihara, T. Suhara, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. 24, pp. 1–37.
    [CrossRef]
  3. L. G. Cohen, M. V. Schneider, Appl. Opt. 13, 89 (1974).
    [CrossRef] [PubMed]
  4. A. Sasaki, T. Baba, K. Iga, Jpn. J. Appl. Phys. 31, 1611 (1992).
    [CrossRef]
  5. N. Rykalin, A. Uglov, A. Kokora, Laser Machining and Welding (Pergamon, Oxford, 1978), p. 201.
  6. U. C. Paek, A. L. Weaver, Appl. Opt. 14,294 (1975).
    [CrossRef] [PubMed]
  7. M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawa, J. Appl. Phys. 50, 6881 (1979).
    [CrossRef]
  8. S. R. Elliott, in Materials Science and Technology, J. Zarzycki, ed. (VCH, Weinheim, Germany, 1991), Vol. 9, p. 377.
  9. K. Tanaka, Rev. Solid State Sci. 4, 641 (1990).
  10. H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 65, 2925 (1994).
    [CrossRef]
  11. H. Hisakuni, K. Tanaka, Solid State Commun. 90, 483 (1994).
    [CrossRef]
  12. In films with a thickness of 100–200 μm the expansion on the rear surface is smaller than that on the front surface. The fact that the rear expansion becomes smaller with thickness seems to be related to the formation of persistent self-focusing structures.10,11
  13. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 133.
  14. Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, S. Sudo, Appl. Phys. Lett. 65, 13 (1994).
    [CrossRef]
  15. T. Katsuyama, H. Matsumura, J. Appl. Phys. 75, 2743 (1994).
    [CrossRef]

1994

H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 65, 2925 (1994).
[CrossRef]

H. Hisakuni, K. Tanaka, Solid State Commun. 90, 483 (1994).
[CrossRef]

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, S. Sudo, Appl. Phys. Lett. 65, 13 (1994).
[CrossRef]

T. Katsuyama, H. Matsumura, J. Appl. Phys. 75, 2743 (1994).
[CrossRef]

1992

A. Sasaki, T. Baba, K. Iga, Jpn. J. Appl. Phys. 31, 1611 (1992).
[CrossRef]

1990

K. Tanaka, Rev. Solid State Sci. 4, 641 (1990).

1979

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawa, J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

1975

1974

Baba, T.

A. Sasaki, T. Baba, K. Iga, Jpn. J. Appl. Phys. 31, 1611 (1992).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 133.

Cohen, L. G.

Elliott, S. R.

S. R. Elliott, in Materials Science and Technology, J. Zarzycki, ed. (VCH, Weinheim, Germany, 1991), Vol. 9, p. 377.

Fujiura, K.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, S. Sudo, Appl. Phys. Lett. 65, 13 (1994).
[CrossRef]

Hisakuni, H.

H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 65, 2925 (1994).
[CrossRef]

H. Hisakuni, K. Tanaka, Solid State Commun. 90, 483 (1994).
[CrossRef]

Horigome, S.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawa, J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Iga, K.

A. Sasaki, T. Baba, K. Iga, Jpn. J. Appl. Phys. 31, 1611 (1992).
[CrossRef]

K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, Tokyo, 1984), pp. 8, 107.

Kanamori, T.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, S. Sudo, Appl. Phys. Lett. 65, 13 (1994).
[CrossRef]

Katsuyama, T.

T. Katsuyama, H. Matsumura, J. Appl. Phys. 75, 2743 (1994).
[CrossRef]

Kokora, A.

N. Rykalin, A. Uglov, A. Kokora, Laser Machining and Welding (Pergamon, Oxford, 1978), p. 201.

Kokubun, Y.

K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, Tokyo, 1984), pp. 8, 107.

Matsumura, H.

T. Katsuyama, H. Matsumura, J. Appl. Phys. 75, 2743 (1994).
[CrossRef]

Mori, A.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, S. Sudo, Appl. Phys. Lett. 65, 13 (1994).
[CrossRef]

Nishihara, H.

H. Nishihara, T. Suhara, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. 24, pp. 1–37.
[CrossRef]

Ohishi, Y.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, S. Sudo, Appl. Phys. Lett. 65, 13 (1994).
[CrossRef]

Oikawa, M.

K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, Tokyo, 1984), pp. 8, 107.

Ojima, M.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawa, J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Paek, U. C.

Rykalin, N.

N. Rykalin, A. Uglov, A. Kokora, Laser Machining and Welding (Pergamon, Oxford, 1978), p. 201.

Sasaki, A.

A. Sasaki, T. Baba, K. Iga, Jpn. J. Appl. Phys. 31, 1611 (1992).
[CrossRef]

Schneider, M. V.

Shigematsu, K.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawa, J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Sudo, S.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, S. Sudo, Appl. Phys. Lett. 65, 13 (1994).
[CrossRef]

Suhara, T.

H. Nishihara, T. Suhara, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. 24, pp. 1–37.
[CrossRef]

Tanaka, K.

H. Hisakuni, K. Tanaka, Solid State Commun. 90, 483 (1994).
[CrossRef]

H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 65, 2925 (1994).
[CrossRef]

K. Tanaka, Rev. Solid State Sci. 4, 641 (1990).

Taniguchi, Y.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawa, J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Terao, M.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawa, J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Uglov, A.

N. Rykalin, A. Uglov, A. Kokora, Laser Machining and Welding (Pergamon, Oxford, 1978), p. 201.

Weaver, A. L.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 133.

Yonezawa, S.

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawa, J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, S. Sudo, Appl. Phys. Lett. 65, 13 (1994).
[CrossRef]

H. Hisakuni, K. Tanaka, Appl. Phys. Lett. 65, 2925 (1994).
[CrossRef]

J. Appl. Phys.

T. Katsuyama, H. Matsumura, J. Appl. Phys. 75, 2743 (1994).
[CrossRef]

M. Terao, K. Shigematsu, M. Ojima, Y. Taniguchi, S. Horigome, S. Yonezawa, J. Appl. Phys. 50, 6881 (1979).
[CrossRef]

Jpn. J. Appl. Phys.

A. Sasaki, T. Baba, K. Iga, Jpn. J. Appl. Phys. 31, 1611 (1992).
[CrossRef]

Rev. Solid State Sci.

K. Tanaka, Rev. Solid State Sci. 4, 641 (1990).

Solid State Commun.

H. Hisakuni, K. Tanaka, Solid State Commun. 90, 483 (1994).
[CrossRef]

Other

In films with a thickness of 100–200 μm the expansion on the rear surface is smaller than that on the front surface. The fact that the rear expansion becomes smaller with thickness seems to be related to the formation of persistent self-focusing structures.10,11

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1980), p. 133.

N. Rykalin, A. Uglov, A. Kokora, Laser Machining and Welding (Pergamon, Oxford, 1978), p. 201.

K. Iga, Y. Kokubun, M. Oikawa, Fundamentals of Microoptics (Academic, Tokyo, 1984), pp. 8, 107.

H. Nishihara, T. Suhara, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1987), Vol. 24, pp. 1–37.
[CrossRef]

S. R. Elliott, in Materials Science and Technology, J. Zarzycki, ed. (VCH, Weinheim, Germany, 1991), Vol. 9, p. 377.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Surface profile of a 50-μm-thick As2S3 film illuminated for 100 s with focused light from a 10-mW He–Ne laser. Note that the vertical and the horizontal scales are different.

Fig. 2
Fig. 2

(a) Photoinduced lens array in As2S3 glass prepared by point-by-point exposure of He–Ne laser light and (b) the focusing operation of transmitted light. The center-to-center distance between the lenses is 30 μm, and the lens diameter is approximately 10 μm. The photograph in (a) was taken with a scanning electron microscope, and the sample was tilted a little to clarify the expanded structure. In (b) the sample was placed on a scale and the photograph was taken in focus at the distance where transmitted light is focused by the microlenses. The line separation of the scale is 10 μm.

Fig. 3
Fig. 3

(a) Linear relief structure and (b) the focusing operation of transmitted light. The length of the relief is 100 μm. For details see Fig. 1.

Fig. 4
Fig. 4

Surface of an As2S3 film with 50-μm thickness illuminated through a pinhole of 25-μm diameter. The photograph was taken by a scanning electron microscope.

Tables (1)

Tables Icon

Table 1 Chalcogenide Glasses Used for Producing Microlenses

Metrics