Abstract

We demonstrate a method for the measurement of femtosecond optical pulses in the focal point of a high-NA lens, using interferometric autocorrelation through two-photon absorption. A chirp-free input pulse of 47 fs is found to broaden by ≈50% after focusing by a well-compensated objective. With proper prechirp compensation, the actual pulse width in the focus of such a lens system can be restored to (almost) its initial value. The unique value of the presented two-photon autocorrelation technique is its capability of measuring the actual pulse width at the focal point of a high-NA lens, an aspect that is of direct importance to two-photon imaging approaches, for example.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Curley, A. I. Ferguson, J. G. White, W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
    [CrossRef]
  2. W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  3. D. W. Piston, D. R. Sandison, W. W. Webb, Proc. Soc. Photo-Opt. Instrum. Eng. 1640, 379 (1992).
  4. D. W. Piston, M. S. Kirby, H. Cheng, W. J. Lederer, W. W. Webb, Appl. Opt. 33, 662 (1994).
    [CrossRef] [PubMed]
  5. G. J. Brakenhoff, H. T. M. v. d. Voort, E. A. v. Spronsen, W. A. Linnemans, N. Nanninga, Nature (London) 317, 748 (1985).
    [CrossRef] [PubMed]
  6. Z. L. Horvath, Z. Bor, Opt. Commun. 108, 333 (1994).
    [CrossRef]
  7. R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]
  8. J. M. Diels, J. J. Fontaine, I. C. McMichael, F. Simoni, Appl. Opt. 24, 1270 (1985).
    [CrossRef] [PubMed]
  9. S. Hell, G. Reiner, C. Cremer, E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
    [CrossRef]

1994

1993

S. Hell, G. Reiner, C. Cremer, E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

1992

P. F. Curley, A. I. Ferguson, J. G. White, W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

D. W. Piston, D. R. Sandison, W. W. Webb, Proc. Soc. Photo-Opt. Instrum. Eng. 1640, 379 (1992).

1990

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1985

G. J. Brakenhoff, H. T. M. v. d. Voort, E. A. v. Spronsen, W. A. Linnemans, N. Nanninga, Nature (London) 317, 748 (1985).
[CrossRef] [PubMed]

J. M. Diels, J. J. Fontaine, I. C. McMichael, F. Simoni, Appl. Opt. 24, 1270 (1985).
[CrossRef] [PubMed]

1984

Amos, W. B.

P. F. Curley, A. I. Ferguson, J. G. White, W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Bor, Z.

Z. L. Horvath, Z. Bor, Opt. Commun. 108, 333 (1994).
[CrossRef]

Brakenhoff, G. J.

G. J. Brakenhoff, H. T. M. v. d. Voort, E. A. v. Spronsen, W. A. Linnemans, N. Nanninga, Nature (London) 317, 748 (1985).
[CrossRef] [PubMed]

Cheng, H.

Cremer, C.

S. Hell, G. Reiner, C. Cremer, E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

Curley, P. F.

P. F. Curley, A. I. Ferguson, J. G. White, W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Diels, J. M.

Ferguson, A. I.

P. F. Curley, A. I. Ferguson, J. G. White, W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Fontaine, J. J.

Fork, R. L.

Gordon, J. P.

Hell, S.

S. Hell, G. Reiner, C. Cremer, E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

Horvath, Z. L.

Z. L. Horvath, Z. Bor, Opt. Commun. 108, 333 (1994).
[CrossRef]

Kirby, M. S.

Lederer, W. J.

Linnemans, W. A.

G. J. Brakenhoff, H. T. M. v. d. Voort, E. A. v. Spronsen, W. A. Linnemans, N. Nanninga, Nature (London) 317, 748 (1985).
[CrossRef] [PubMed]

Martinez, O. E.

McMichael, I. C.

Nanninga, N.

G. J. Brakenhoff, H. T. M. v. d. Voort, E. A. v. Spronsen, W. A. Linnemans, N. Nanninga, Nature (London) 317, 748 (1985).
[CrossRef] [PubMed]

Piston, D. W.

D. W. Piston, M. S. Kirby, H. Cheng, W. J. Lederer, W. W. Webb, Appl. Opt. 33, 662 (1994).
[CrossRef] [PubMed]

D. W. Piston, D. R. Sandison, W. W. Webb, Proc. Soc. Photo-Opt. Instrum. Eng. 1640, 379 (1992).

Reiner, G.

S. Hell, G. Reiner, C. Cremer, E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

Sandison, D. R.

D. W. Piston, D. R. Sandison, W. W. Webb, Proc. Soc. Photo-Opt. Instrum. Eng. 1640, 379 (1992).

Simoni, F.

Spronsen, E. A. v.

G. J. Brakenhoff, H. T. M. v. d. Voort, E. A. v. Spronsen, W. A. Linnemans, N. Nanninga, Nature (London) 317, 748 (1985).
[CrossRef] [PubMed]

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Voort, H. T. M. v. d.

G. J. Brakenhoff, H. T. M. v. d. Voort, E. A. v. Spronsen, W. A. Linnemans, N. Nanninga, Nature (London) 317, 748 (1985).
[CrossRef] [PubMed]

Webb, W. W.

D. W. Piston, M. S. Kirby, H. Cheng, W. J. Lederer, W. W. Webb, Appl. Opt. 33, 662 (1994).
[CrossRef] [PubMed]

D. W. Piston, D. R. Sandison, W. W. Webb, Proc. Soc. Photo-Opt. Instrum. Eng. 1640, 379 (1992).

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

White, J. G.

P. F. Curley, A. I. Ferguson, J. G. White, W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Appl. Opt.

J. Microsc.

S. Hell, G. Reiner, C. Cremer, E. H. K. Stelzer, J. Microsc. 169, 391 (1993).
[CrossRef]

Nature

G. J. Brakenhoff, H. T. M. v. d. Voort, E. A. v. Spronsen, W. A. Linnemans, N. Nanninga, Nature (London) 317, 748 (1985).
[CrossRef] [PubMed]

Opt. Commun.

Z. L. Horvath, Z. Bor, Opt. Commun. 108, 333 (1994).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

P. F. Curley, A. I. Ferguson, J. G. White, W. B. Amos, Opt. Quantum Electron. 24, 851 (1992).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

D. W. Piston, D. R. Sandison, W. W. Webb, Proc. Soc. Photo-Opt. Instrum. Eng. 1640, 379 (1992).

Science

W. Denk, J. H. Strickler, W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of experimental setup for SHG and TPA autocorrelation measurements. PC, prechirp unit; VD, variable-delay line mounted on a home-built shaker; L1, 50-mm lens; L2, 80-mm lens; B, 0.1-mm β-barium borate crystal (type I); P, 100-μm pinhole; D, dichroic mirror; O, objective; S, sample on a variable-height translation stage; PMT, photomultiplier tube; Scope, Tektronix 2440 (500 Msamples/s) digital scope.

Fig. 2
Fig. 2

(a) Autocorrelation trace of the laser pulse through SHG in a 0.1-mm β-barium borate crystal (type I). The envelope is the best fit obtained by assuming a Gaussian pulse of 46.6 ± 0.5 fs. (b) Autocorrelation trace of the laser pulse through TPA in a 10−3 M solution of Rhodamine 6G, using the Student objective (see text). The envelope is the best fit obtained by assuming a Gaussian pulse of 50.9 ± 1.2 fs.

Fig. 3
Fig. 3

(a) Measured pulse width and (b) the measured and calculated amplitude of the two-photon autocorrelation signal as a function of the prism distance when translated in the direction normal to the base. Approximately 450 fs2 of group-velocity dispersion is compensated for in the Nikon case, and 300 fs2 of group-velocity dispersion for the Student objective (see text).

Metrics