Abstract

The true scattering coefficients of turbid matter have been determined by use of picosecond time-resolved imaging. The scattering coefficients measured by the conventional cw collimation method were found to be smaller than those obtained from the early-time-sliced ballistic photons.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. van Staveren, C. J. M. Mose, J. van Marle, S. A. Prahl, M. J. C. van Gemert, Appl. Opt. 30, 4507 (1991).
    [CrossRef] [PubMed]
  2. C. J. M. Moes, M. J. C. van Gemert, J. van Marle, W. M. Star, J. P. A. Marilnissen, S. A. Prahl, Appl. Opt. 28, 2292 (1989).
    [CrossRef] [PubMed]
  3. I. Driver, J. W. Feather, P. R. King, J. B. Dawson, Phys. Med. Biol. 12, 1927 (1989).
    [CrossRef]
  4. R. R. Alfano, X. Liang, L. Wang, P. Ho, Science 264, 1913 (1994).
    [CrossRef] [PubMed]
  5. L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
    [CrossRef] [PubMed]
  6. K. M. Yoo, R. R. Alfano, Opt. Lett. 15, 320 (1990).
    [CrossRef] [PubMed]
  7. B. Das, K. Yoo, R. R. Alfano, Opt. Lett. 18, 1092 (1993).
    [CrossRef] [PubMed]
  8. L. Wang, X. Liang, P. P. Ho, R. R. Alfano, Opt. Lett. 18, 241 (1993).
    [CrossRef] [PubMed]
  9. L. Wang, P. P. Ho, R. R. Alfano, Appl. Opt. 32, 5043 (1993).
    [CrossRef] [PubMed]
  10. D. Benaron, D. Stevenson, Science 259, 1463 (1993).
    [CrossRef] [PubMed]
  11. L. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, Opt. Photon. News 4(10), 14 (1993).
    [CrossRef]
  12. H. Chen, Y. Chen, D. Dillworth, E. Leith, J. Lopez, J. Valdmanis, Opt. Lett. 16, 487 (1991).
    [CrossRef] [PubMed]
  13. M. Duncan, R. Mahon, L. Tankersley, J. Reintjes, Opt. Lett. 16, 1868 (1991).
    [CrossRef] [PubMed]
  14. M. S. Patterson, B. Chance, B. C. Wilson, Appl. Opt. 28, 2331 (1989).
    [CrossRef] [PubMed]
  15. M. A. Duguay, A. T. Mattick, Appl. Opt. 10, 2162 (1971).
    [CrossRef] [PubMed]
  16. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, Appl. Opt. 31, 3509 (1992).
    [CrossRef] [PubMed]

1994 (1)

R. R. Alfano, X. Liang, L. Wang, P. Ho, Science 264, 1913 (1994).
[CrossRef] [PubMed]

1993 (5)

1992 (1)

1991 (4)

1990 (1)

1989 (3)

1971 (1)

Alfano, R. R.

Benaron, D.

D. Benaron, D. Stevenson, Science 259, 1463 (1993).
[CrossRef] [PubMed]

Chance, B.

Chen, H.

Chen, Y.

Das, B.

Dawson, J. B.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, Phys. Med. Biol. 12, 1927 (1989).
[CrossRef]

Dillworth, D.

Driver, I.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, Phys. Med. Biol. 12, 1927 (1989).
[CrossRef]

Duguay, M. A.

Duncan, M.

Feather, J. W.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, Phys. Med. Biol. 12, 1927 (1989).
[CrossRef]

Fujimoto, J.

L. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, Opt. Photon. News 4(10), 14 (1993).
[CrossRef]

Hee, M.

L. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, Opt. Photon. News 4(10), 14 (1993).
[CrossRef]

Hefetz, Y.

Ho, P.

R. R. Alfano, X. Liang, L. Wang, P. Ho, Science 264, 1913 (1994).
[CrossRef] [PubMed]

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[CrossRef] [PubMed]

Ho, P. P.

Huang, D.

L. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, Opt. Photon. News 4(10), 14 (1993).
[CrossRef]

Izatt, L.

L. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, Opt. Photon. News 4(10), 14 (1993).
[CrossRef]

Jacques, S. L.

King, P. R.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, Phys. Med. Biol. 12, 1927 (1989).
[CrossRef]

Leith, E.

Liang, X.

Lin, C.

L. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, Opt. Photon. News 4(10), 14 (1993).
[CrossRef]

Liu, C.

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[CrossRef] [PubMed]

Lopez, J.

Madsen, S. J.

Mahon, R.

Marilnissen, J. P. A.

Mattick, A. T.

Moes, C. J. M.

Mose, C. J. M.

Park, Y. D.

Patterson, M. S.

Prahl, S. A.

Puliafito, C.

L. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, Opt. Photon. News 4(10), 14 (1993).
[CrossRef]

Reintjes, J.

Schuman, J.

L. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, Opt. Photon. News 4(10), 14 (1993).
[CrossRef]

Star, W. M.

Stevenson, D.

D. Benaron, D. Stevenson, Science 259, 1463 (1993).
[CrossRef] [PubMed]

Swanson, E.

L. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, Opt. Photon. News 4(10), 14 (1993).
[CrossRef]

Tankersley, L.

Valdmanis, J.

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

Wang, L.

R. R. Alfano, X. Liang, L. Wang, P. Ho, Science 264, 1913 (1994).
[CrossRef] [PubMed]

L. Wang, X. Liang, P. P. Ho, R. R. Alfano, Opt. Lett. 18, 241 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, R. R. Alfano, Appl. Opt. 32, 5043 (1993).
[CrossRef] [PubMed]

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[CrossRef] [PubMed]

Wilson, B. C.

Yoo, K.

Yoo, K. M.

Zhang, G.

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[CrossRef] [PubMed]

Appl. Opt. (6)

Opt. Lett. (5)

Opt. Photon. News (1)

L. Izatt, M. Hee, D. Huang, E. Swanson, C. Lin, J. Schuman, C. Puliafito, J. Fujimoto, Opt. Photon. News 4(10), 14 (1993).
[CrossRef]

Phys. Med. Biol. (1)

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, Phys. Med. Biol. 12, 1927 (1989).
[CrossRef]

Science (3)

R. R. Alfano, X. Liang, L. Wang, P. Ho, Science 264, 1913 (1994).
[CrossRef] [PubMed]

L. Wang, P. Ho, C. Liu, G. Zhang, R. R. Alfano, Science 253, 769 (1991).
[CrossRef] [PubMed]

D. Benaron, D. Stevenson, Science 259, 1463 (1993).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the forward-scattered ballistic, snake, and diffusive photons propagating through a turbid medium. B, ballistic; S, snake; D, diffusive.

Fig. 2
Fig. 2

Time-resolved picosecond KF imaging system. The effective diameter of the gating beam was ∼1 to 2 mm. The measured sensitivity of the cooled CCD at 1054 nm was ∼200 photons/count. The angle between the pump and probe beams was ∼4°, and the Kerr transmission efficiency was ∼7%. To eliminate the loss from optical components (lenses, polarizers), we determined the 7% Kerr transmission efficiency to be IKF(T = 0 and polarizers crossed)/IRef(polarizers set in parallel and a 2-mm mechanical aperture placed in front of the Kerr cell). The extinction ratio of a pair of calcite polarizers was ∼1 × 106. The CCD camera shutter was opened from the computer keyboard ∼1–2 s before the laser was shot manually and then closed automatically after 4 s (by a computer). ML, mode-locked glass laser pulse train with a pulse energy fluctuation of ∼5% from shot to shot; KDP, potassium dihydrate phosphate crystal for second-harmonic generation of the 527-nm pulse; BS, beam splitter; DL, delay line; P, polarizer oriented at +45° with respect to the polarization of the 1054-nm beam; A, analyzer oriented at −45° with respect to the polarization of 1054-nm beam; K, 1-cm-long CS2 Kerr cell; FL, lens with 50-cm focal length; L1, L2, Fourier-transform lenses with focal lengths of 60 and 30 cm, respectively. For comparison the same sample was tested by a CWF imaging system in which the diameter of a mechanical aperture was set to be approximately the same as the beam waist of the gating pulse for the induced aperture in the KF measurement.

Fig. 3
Fig. 3

Temporal intensity profile of the transmitted signal of a 10-ps 1054-nm pulse through a 2% diluted In-tralipid solution (solid curve). The sample cell thickness was 10 mm, and the probe wavelength was 1054 nm. The dotted curve is the Kerr temporal intensity through a 10-mm-thick water sample as a reference prompt curve. To compare with the normalized water reference KF signal, we multiplied the normalized Intralipid KF signal by a factor of 74.

Fig. 4
Fig. 4

Scattering coefficient μs at 1054 nm as a function of the concentration of a diluted 10% Intralipid suspension. (Sample cell thickness, 10 mm.) The open squares are the measured scattering coefficients of various diluted Intralipid solutions from the ballistic KF1, the filled triangle is the measured attenuation coefficient of a 2% diluted Intralipid solution based on the time-integrated KF1 + KF2 ballistic and snake signals, the open triangles are the measured scattering coefficients of various diluted Intralipid solutions from the CWF measurement, and the open circle is the scattering coefficient of a 2% diluted Intralipid solution from Ref. 1.

Metrics