Abstract

We demonstrate the efficient excitation of high-Q whispering-gallery modes in near-spherical fused-silica microparticles in the size range 60–450 μm by the use of an eroded monomode optical fiber. When the sphere is placed in the evanescent field of the guided fiber mode, light is resonantly coupled from the fiber into the microparticle. We report a broadening of resonance modes and a shift of the resonance central frequency as the coupling strength is increased by reduction of the gap between the sphere and the fiber.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.
  2. L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, S. Haroche, Europhys. Lett. 23, 327 (1993).
    [CrossRef]
  3. V. S. Ilchenko, M. L. Gorodetsky, S. P. Vyatchanin, Opt. Commun. 107, 41 (1993).
    [CrossRef]
  4. F. Treussart, J. Hare, L. Collot, V. Lefèvre, D. S. Weiss, V. Sandoghdar, J. M. Raimond, S. Haroche, Opt. Lett. 19, 1651 (1994);A. B. Matsko, S. P. Vyatchanin, H. Mabuchi, H. J. Kimble, Phys. Lett. A 192, 175 (1994).
    [CrossRef] [PubMed]
  5. V. S. Ilchenko, M. L. Gorodetskii, Laser Phys. 2, 1004 (1992).
  6. S. Schiller, R. L. Byer, Opt. Lett. 16, 1138 (1991).
    [CrossRef] [PubMed]
  7. Y. Yamamoto, R. E. Slusher, Phys. Today 46(6), (1993), p. 66.
    [CrossRef]
  8. R. A. Bergh, G. Kottler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
    [CrossRef]
  9. M. J. F. Digonnet, J. R. Feth, L. F. Stokes, H. J. Shaw, Opt. Lett. 10, 463 (1985).
    [CrossRef] [PubMed]
  10. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 1, p. 47.
  11. S. Schiller, I. I. Yu, M. M. Fejer, R. L. Byer, Opt. Lett. 17, 378 (1992).
    [CrossRef] [PubMed]

1994 (1)

1993 (3)

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

V. S. Ilchenko, M. L. Gorodetsky, S. P. Vyatchanin, Opt. Commun. 107, 41 (1993).
[CrossRef]

Y. Yamamoto, R. E. Slusher, Phys. Today 46(6), (1993), p. 66.
[CrossRef]

1992 (2)

V. S. Ilchenko, M. L. Gorodetskii, Laser Phys. 2, 1004 (1992).

S. Schiller, I. I. Yu, M. M. Fejer, R. L. Byer, Opt. Lett. 17, 378 (1992).
[CrossRef] [PubMed]

1991 (1)

1985 (1)

1980 (1)

R. A. Bergh, G. Kottler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

Benner, R. E.

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.

Bergh, R. A.

R. A. Bergh, G. Kottler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 1, p. 47.

Brune, M.

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Byer, R. L.

Collot, L.

Digonnet, M. J. F.

Fejer, M. M.

Feth, J. R.

Gorodetskii, M. L.

V. S. Ilchenko, M. L. Gorodetskii, Laser Phys. 2, 1004 (1992).

Gorodetsky, M. L.

V. S. Ilchenko, M. L. Gorodetsky, S. P. Vyatchanin, Opt. Commun. 107, 41 (1993).
[CrossRef]

Hare, J.

Haroche, S.

Hill, S. C.

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.

Ilchenko, V. S.

V. S. Ilchenko, M. L. Gorodetsky, S. P. Vyatchanin, Opt. Commun. 107, 41 (1993).
[CrossRef]

V. S. Ilchenko, M. L. Gorodetskii, Laser Phys. 2, 1004 (1992).

Kottler, G.

R. A. Bergh, G. Kottler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

Lefèvre, V.

Lefèvre-Seguin, V.

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Raimond, J. M.

Sandoghdar, V.

Schiller, S.

Shaw, H. J.

Slusher, R. E.

Y. Yamamoto, R. E. Slusher, Phys. Today 46(6), (1993), p. 66.
[CrossRef]

Stokes, L. F.

Treussart, F.

Vyatchanin, S. P.

V. S. Ilchenko, M. L. Gorodetsky, S. P. Vyatchanin, Opt. Commun. 107, 41 (1993).
[CrossRef]

Weiss, D. S.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 1, p. 47.

Yamamoto, Y.

Y. Yamamoto, R. E. Slusher, Phys. Today 46(6), (1993), p. 66.
[CrossRef]

Yu, I. I.

Electron. Lett. (1)

R. A. Bergh, G. Kottler, H. J. Shaw, Electron. Lett. 16, 260 (1980).
[CrossRef]

Europhys. Lett. (1)

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Laser Phys (1)

V. S. Ilchenko, M. L. Gorodetskii, Laser Phys. 2, 1004 (1992).

Opt. Commun. (1)

V. S. Ilchenko, M. L. Gorodetsky, S. P. Vyatchanin, Opt. Commun. 107, 41 (1993).
[CrossRef]

Opt. Lett. (4)

Phys. Today (1)

Y. Yamamoto, R. E. Slusher, Phys. Today 46(6), (1993), p. 66.
[CrossRef]

Other (2)

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 1, p. 47.

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the eroded fiber coupler, showing the relative orientation of the microsphere and of the coupling surface (not drawn to scale). The fiber coupler and the microsphere are independently mounted upon microtravel plates with piezoelectric fine control. The brass block on which the microsphere is mounted is temperature stabilized.

Fig. 2
Fig. 2

Layout used for exciting and detecting WGM’s in microspheres by use of the eroded fiber half-coupler. The scanning of the laser and the recording of the lock-in signal are controlled by computer.

Fig. 3
Fig. 3

Observed linewidth and shift of a WGM resonance as functions of the coupler/sphere gap. The experimental data are represented as symbols: the curves are best-fit exponentials, with an offset for the width to account for its limiting value. The data were recorded from a TE mode in a sphere of radius 215 μm made of the same material as the fiber coupler.

Metrics