Abstract

We report on a five-channel wavelength-division demultiplexer using substrate-guided waves in conjunction with a polymer-based Littrow hologram operating at 700, 710, 720, 730, and 740 nm. An average cross talk of −40 dB between adjacent channels is measured. Diffraction efficiencies of 69%, 78%, 83%, 77%, and 69% are both experimentally and theoretically confirmed for the five-channel device. We also present further study aimed at reducing the wavelength channel separation to 1 nm and find that achieving such a goal requires a device length of 6.4 cm corresponding to a propagation distance of 9.05 cm.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Tomlinson, Appl. Opt. 16, 2180 (1977).
    [CrossRef] [PubMed]
  2. A. C. Livanos, A. Katzir, A. Yariv, S. C. Hong, Appl. Phys. Lett. 30, 519 (1977).
    [CrossRef]
  3. H. Ishio, J. Minowa, K. Nosu, J. Lightwave Technol. LT-2, 448 (1984).
    [CrossRef]
  4. I. Nishi, T. Oguchi, K. Kato, J. Lightwave Technol. LT-5, 1695 (1987).
    [CrossRef]
  5. H. Obara, Y. Hamazumi, Electron. Lett. 28, 1268 (1992).
    [CrossRef]
  6. A. E. Willner, C. J. Chang-Hasnain, J. E. Leigth, IEEE Photon. Technol. Lett. 5, 838 (1993).
    [CrossRef]
  7. Y. T. Huang, D. C. Su, Y. K. Tsai, Opt. Lett. 17, 1629 (1992).
    [CrossRef] [PubMed]
  8. M. M. Li, R. T. Chen, Appl. Phys. Lett. 66, 262 (1995).
    [CrossRef]
  9. R. T. Chen, H. Lu, D. Robinson, T. Jannson, Appl. Phys. Lett. 59, 1144 (1991).
    [CrossRef]
  10. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  11. R. T. Chen, S. Tang, M. M. Li, D. Gerold, S. Natarajan, Appl. Phys. Lett. 63, 1883 (1993).
    [CrossRef]

1995 (1)

M. M. Li, R. T. Chen, Appl. Phys. Lett. 66, 262 (1995).
[CrossRef]

1993 (2)

R. T. Chen, S. Tang, M. M. Li, D. Gerold, S. Natarajan, Appl. Phys. Lett. 63, 1883 (1993).
[CrossRef]

A. E. Willner, C. J. Chang-Hasnain, J. E. Leigth, IEEE Photon. Technol. Lett. 5, 838 (1993).
[CrossRef]

1992 (2)

1991 (1)

R. T. Chen, H. Lu, D. Robinson, T. Jannson, Appl. Phys. Lett. 59, 1144 (1991).
[CrossRef]

1987 (1)

I. Nishi, T. Oguchi, K. Kato, J. Lightwave Technol. LT-5, 1695 (1987).
[CrossRef]

1984 (1)

H. Ishio, J. Minowa, K. Nosu, J. Lightwave Technol. LT-2, 448 (1984).
[CrossRef]

1977 (2)

A. C. Livanos, A. Katzir, A. Yariv, S. C. Hong, Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

W. J. Tomlinson, Appl. Opt. 16, 2180 (1977).
[CrossRef] [PubMed]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Chang-Hasnain, C. J.

A. E. Willner, C. J. Chang-Hasnain, J. E. Leigth, IEEE Photon. Technol. Lett. 5, 838 (1993).
[CrossRef]

Chen, R. T.

M. M. Li, R. T. Chen, Appl. Phys. Lett. 66, 262 (1995).
[CrossRef]

R. T. Chen, S. Tang, M. M. Li, D. Gerold, S. Natarajan, Appl. Phys. Lett. 63, 1883 (1993).
[CrossRef]

R. T. Chen, H. Lu, D. Robinson, T. Jannson, Appl. Phys. Lett. 59, 1144 (1991).
[CrossRef]

Gerold, D.

R. T. Chen, S. Tang, M. M. Li, D. Gerold, S. Natarajan, Appl. Phys. Lett. 63, 1883 (1993).
[CrossRef]

Hamazumi, Y.

H. Obara, Y. Hamazumi, Electron. Lett. 28, 1268 (1992).
[CrossRef]

Hong, S. C.

A. C. Livanos, A. Katzir, A. Yariv, S. C. Hong, Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

Huang, Y. T.

Ishio, H.

H. Ishio, J. Minowa, K. Nosu, J. Lightwave Technol. LT-2, 448 (1984).
[CrossRef]

Jannson, T.

R. T. Chen, H. Lu, D. Robinson, T. Jannson, Appl. Phys. Lett. 59, 1144 (1991).
[CrossRef]

Kato, K.

I. Nishi, T. Oguchi, K. Kato, J. Lightwave Technol. LT-5, 1695 (1987).
[CrossRef]

Katzir, A.

A. C. Livanos, A. Katzir, A. Yariv, S. C. Hong, Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Leigth, J. E.

A. E. Willner, C. J. Chang-Hasnain, J. E. Leigth, IEEE Photon. Technol. Lett. 5, 838 (1993).
[CrossRef]

Li, M. M.

M. M. Li, R. T. Chen, Appl. Phys. Lett. 66, 262 (1995).
[CrossRef]

R. T. Chen, S. Tang, M. M. Li, D. Gerold, S. Natarajan, Appl. Phys. Lett. 63, 1883 (1993).
[CrossRef]

Livanos, A. C.

A. C. Livanos, A. Katzir, A. Yariv, S. C. Hong, Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

Lu, H.

R. T. Chen, H. Lu, D. Robinson, T. Jannson, Appl. Phys. Lett. 59, 1144 (1991).
[CrossRef]

Minowa, J.

H. Ishio, J. Minowa, K. Nosu, J. Lightwave Technol. LT-2, 448 (1984).
[CrossRef]

Natarajan, S.

R. T. Chen, S. Tang, M. M. Li, D. Gerold, S. Natarajan, Appl. Phys. Lett. 63, 1883 (1993).
[CrossRef]

Nishi, I.

I. Nishi, T. Oguchi, K. Kato, J. Lightwave Technol. LT-5, 1695 (1987).
[CrossRef]

Nosu, K.

H. Ishio, J. Minowa, K. Nosu, J. Lightwave Technol. LT-2, 448 (1984).
[CrossRef]

Obara, H.

H. Obara, Y. Hamazumi, Electron. Lett. 28, 1268 (1992).
[CrossRef]

Oguchi, T.

I. Nishi, T. Oguchi, K. Kato, J. Lightwave Technol. LT-5, 1695 (1987).
[CrossRef]

Robinson, D.

R. T. Chen, H. Lu, D. Robinson, T. Jannson, Appl. Phys. Lett. 59, 1144 (1991).
[CrossRef]

Su, D. C.

Tang, S.

R. T. Chen, S. Tang, M. M. Li, D. Gerold, S. Natarajan, Appl. Phys. Lett. 63, 1883 (1993).
[CrossRef]

Tomlinson, W. J.

Tsai, Y. K.

Willner, A. E.

A. E. Willner, C. J. Chang-Hasnain, J. E. Leigth, IEEE Photon. Technol. Lett. 5, 838 (1993).
[CrossRef]

Yariv, A.

A. C. Livanos, A. Katzir, A. Yariv, S. C. Hong, Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. C. Livanos, A. Katzir, A. Yariv, S. C. Hong, Appl. Phys. Lett. 30, 519 (1977).
[CrossRef]

M. M. Li, R. T. Chen, Appl. Phys. Lett. 66, 262 (1995).
[CrossRef]

R. T. Chen, H. Lu, D. Robinson, T. Jannson, Appl. Phys. Lett. 59, 1144 (1991).
[CrossRef]

R. T. Chen, S. Tang, M. M. Li, D. Gerold, S. Natarajan, Appl. Phys. Lett. 63, 1883 (1993).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Electron. Lett. (1)

H. Obara, Y. Hamazumi, Electron. Lett. 28, 1268 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. E. Willner, C. J. Chang-Hasnain, J. E. Leigth, IEEE Photon. Technol. Lett. 5, 838 (1993).
[CrossRef]

J. Lightwave Technol. (2)

H. Ishio, J. Minowa, K. Nosu, J. Lightwave Technol. LT-2, 448 (1984).
[CrossRef]

I. Nishi, T. Oguchi, K. Kato, J. Lightwave Technol. LT-5, 1695 (1987).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the five-channel surface-normal WDDM device using substrate-guided waves in conjunction with a dispersive Littrow hologram. GRIN, graded-index.

Fig. 2
Fig. 2

Theoretical and experimental results of diffraction efficiencies as a function of wavelength.

Fig. 3
Fig. 3

Output spectra of the five-channel WDDM device at (a) 700, (b) 710, (c) 720, (d) 730, and (e) 740 nm.

Fig. 4
Fig. 4

Output dots of the device at (a) 700, (b) 710, (c) 720, (d) 730, and (e) 740 nm.

Fig. 5
Fig. 5

Theoretical and experimental results for the relationship between the device length and the channel separation corresponding to the grating vector of our device.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

θ 0 = 2 sin 1 ( λ 0 / 2 n Λ ) ,
η = [ sin 2 ( ν 2 + ξ 2 ) 1 / 2 ] / ( 1 + ξ 2 / ν 2 ) .
ν = π Δ n d / λ 0 ( c r c s ) 1 / 2 ,
ξ = Δ λ K 2 d / 8 π n c s = Δ θ K d sin ( φ ϕ 0 ) / 2 c s ,
c r = cos ϕ 0 , c s = c r ( K / k 0 ) cos ( θ 0 ) ,
K = 2 π / Λ , k 0 = 2 π / λ 0 ,
φ = 0.5 ( 180 ° θ 0 ) ,
Δ θ = θ i θ 0 = Δ λ K / 4 π n sin ( φ ϕ 0 ) .
Δ d = d i d 0 = 2 T [ tan ( θ i ) tan ( θ 0 ) ] ,

Metrics