Abstract

We propose a distributed optical-fiber sensing scheme using four-photon mixing pulse walk-off. We use a copropagating system in which only a pump wave is launched into the fiber. We analyze the performance by including the effects of fiber birefringence, group-velocity dispersion, and self-phase modulation. A short system with high sensitivity and good resolution can be built. The useful operating length is limited by self-phase-modulation-induced pulse broadening.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Rogers, Electron. Lett. 16, 489 (1980).
    [CrossRef]
  2. M. C. Farries, A. J. Rogers, Proc. Soc. Photo-Opt. Instrum. Eng. 514, 121 (1984).
  3. M. Tateda, T. Horiguchi, T. Kurashima, K. Ishihara, J. Lightwave Technol. 8, 1269 (1990).
    [CrossRef]
  4. F. Parvaneh, V. A. Handerek, A. J. Rogers, Opt. Lett. 17, 1346 (1992).
    [CrossRef] [PubMed]
  5. I. Cokgor, V. A. Handerek, A. J. Rogers, Opt. Lett. 18, 705 (1993).
    [CrossRef] [PubMed]
  6. W. Zhao, E. Bourkoff, IEEE J. Quantum Electron. 29, 2198 (1993).
    [CrossRef]
  7. S. Trillo, W. Wabnitz, Phys. Rev. A 36, 3881 (1987).
    [CrossRef] [PubMed]
  8. R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
    [CrossRef]
  9. R. K. Jain, K. Stenersen, Appl. Phys. B 35, 49 (1984).
    [CrossRef]
  10. R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
    [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Orlando, Fla., 1989), Chap. 3, p. 52.
  12. M. J. Potasek, G. P. Agrawal, S. C. Pinault, J. Opt. Soc. Am. B 3, 205 (1986).
    [CrossRef]

1993 (2)

I. Cokgor, V. A. Handerek, A. J. Rogers, Opt. Lett. 18, 705 (1993).
[CrossRef] [PubMed]

W. Zhao, E. Bourkoff, IEEE J. Quantum Electron. 29, 2198 (1993).
[CrossRef]

1992 (1)

1990 (1)

M. Tateda, T. Horiguchi, T. Kurashima, K. Ishihara, J. Lightwave Technol. 8, 1269 (1990).
[CrossRef]

1987 (1)

S. Trillo, W. Wabnitz, Phys. Rev. A 36, 3881 (1987).
[CrossRef] [PubMed]

1986 (1)

1984 (2)

R. K. Jain, K. Stenersen, Appl. Phys. B 35, 49 (1984).
[CrossRef]

M. C. Farries, A. J. Rogers, Proc. Soc. Photo-Opt. Instrum. Eng. 514, 121 (1984).

1982 (1)

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

1980 (1)

A. J. Rogers, Electron. Lett. 16, 489 (1980).
[CrossRef]

1974 (1)

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
[CrossRef]

Agrawal, G. P.

M. J. Potasek, G. P. Agrawal, S. C. Pinault, J. Opt. Soc. Am. B 3, 205 (1986).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Orlando, Fla., 1989), Chap. 3, p. 52.

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
[CrossRef]

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
[CrossRef]

Bourkoff, E.

W. Zhao, E. Bourkoff, IEEE J. Quantum Electron. 29, 2198 (1993).
[CrossRef]

Cokgor, I.

Farries, M. C.

M. C. Farries, A. J. Rogers, Proc. Soc. Photo-Opt. Instrum. Eng. 514, 121 (1984).

Handerek, V. A.

Horiguchi, T.

M. Tateda, T. Horiguchi, T. Kurashima, K. Ishihara, J. Lightwave Technol. 8, 1269 (1990).
[CrossRef]

Ishihara, K.

M. Tateda, T. Horiguchi, T. Kurashima, K. Ishihara, J. Lightwave Technol. 8, 1269 (1990).
[CrossRef]

Jain, R. K.

R. K. Jain, K. Stenersen, Appl. Phys. B 35, 49 (1984).
[CrossRef]

Kurashima, T.

M. Tateda, T. Horiguchi, T. Kurashima, K. Ishihara, J. Lightwave Technol. 8, 1269 (1990).
[CrossRef]

Parvaneh, F.

Pinault, S. C.

Potasek, M. J.

Rogers, A. J.

I. Cokgor, V. A. Handerek, A. J. Rogers, Opt. Lett. 18, 705 (1993).
[CrossRef] [PubMed]

F. Parvaneh, V. A. Handerek, A. J. Rogers, Opt. Lett. 17, 1346 (1992).
[CrossRef] [PubMed]

M. C. Farries, A. J. Rogers, Proc. Soc. Photo-Opt. Instrum. Eng. 514, 121 (1984).

A. J. Rogers, Electron. Lett. 16, 489 (1980).
[CrossRef]

Stenersen, K.

R. K. Jain, K. Stenersen, Appl. Phys. B 35, 49 (1984).
[CrossRef]

Stolen, R. H.

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
[CrossRef]

Tateda, M.

M. Tateda, T. Horiguchi, T. Kurashima, K. Ishihara, J. Lightwave Technol. 8, 1269 (1990).
[CrossRef]

Trillo, S.

S. Trillo, W. Wabnitz, Phys. Rev. A 36, 3881 (1987).
[CrossRef] [PubMed]

Wabnitz, W.

S. Trillo, W. Wabnitz, Phys. Rev. A 36, 3881 (1987).
[CrossRef] [PubMed]

Zhao, W.

W. Zhao, E. Bourkoff, IEEE J. Quantum Electron. 29, 2198 (1993).
[CrossRef]

Appl. Phys. B (1)

R. K. Jain, K. Stenersen, Appl. Phys. B 35, 49 (1984).
[CrossRef]

Appl. Phys. Lett. (1)

R. H. Stolen, J. E. Bjorkholm, A. Ashkin, Appl. Phys. Lett. 24, 308 (1974).
[CrossRef]

Electron. Lett. (1)

A. J. Rogers, Electron. Lett. 16, 489 (1980).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. H. Stolen, J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062 (1982).
[CrossRef]

W. Zhao, E. Bourkoff, IEEE J. Quantum Electron. 29, 2198 (1993).
[CrossRef]

J. Lightwave Technol. (1)

M. Tateda, T. Horiguchi, T. Kurashima, K. Ishihara, J. Lightwave Technol. 8, 1269 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. A (1)

S. Trillo, W. Wabnitz, Phys. Rev. A 36, 3881 (1987).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. C. Farries, A. J. Rogers, Proc. Soc. Photo-Opt. Instrum. Eng. 514, 121 (1984).

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Orlando, Fla., 1989), Chap. 3, p. 52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic illustration of walk-off between pump, Stokes, and anti-Stokes waves.

Fig. 2
Fig. 2

Pulse broadening as a result of SPM and GVD combined.

Fig. 3
Fig. 3

FPM DOFS experimental arrangement: BPF, band-pass filter; HWP, half-wave plate; BS, beam splitter; D, detector; Mono, monochromator.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ τ ( z ) / τ 0 ] 2 = 1 + 2 ϕ m z / L D + ( 1 + 4 / 3 3 ϕ m 2 ) z 2 / L D 2 ,

Metrics