Abstract

A white-light fiber interferometer working in the spatial domain, using two fiber ends in a hollow tube as the sensing head and an electric magnetic actuator – mirror reflector as the path-compensation-measurement element, is presented. Analysis and preliminary experiments have demonstrated a repeatability of 0.5 μm (2σ) for position – distance measurement, and the measurement uncertainty was estimated to be 1.5 μm (2σ) over a distance range of 150 μm. Suggestions for further improving the measurement accuracy and response speed are also given.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Sirkis, D. D. Brennan, D. Webb, A. Jackson, Electron. Lett. 29, 896 (1993).
    [CrossRef]
  2. P. Sandoz, G. Tribilloon, J. Mod. Opt. 40, 1691 (1993).
    [CrossRef]
  3. B. R. Fogg, A. Wang, M. S. Miller, K. A. Murphy, R. O. Claus, in Fiber Optic Sensor-Based Smart Materials and Structures (Institute of Physics, Bristol, UK, 1992), p. 5.
  4. H. R. Giovannini, D. Yeddon, S. J. Huard, M. R. Lequime, C. Froehly, Opt. Lett. 18, 2074 (1993).
    [CrossRef] [PubMed]
  5. C. E. Lee, H. F. Taylor, J. Lightwave Technol 9, 129 (1991).
    [CrossRef]
  6. C. Belleville, G. Duplain, Opt. Lett. 18, 78 (1993).
    [CrossRef] [PubMed]
  7. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 246.
  8. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 321.
  9. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, Opt. Lett. 16, 273 (1991).
    [CrossRef] [PubMed]
  10. Y. Rao, Y. Ning, D. Jackson, Opt. Lett. 18, 462 (1993).
    [CrossRef] [PubMed]

1993

1991

Belleville, C.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 321.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 246.

Brennan, D. D.

J. S. Sirkis, D. D. Brennan, D. Webb, A. Jackson, Electron. Lett. 29, 896 (1993).
[CrossRef]

Claus, R. O.

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, Opt. Lett. 16, 273 (1991).
[CrossRef] [PubMed]

B. R. Fogg, A. Wang, M. S. Miller, K. A. Murphy, R. O. Claus, in Fiber Optic Sensor-Based Smart Materials and Structures (Institute of Physics, Bristol, UK, 1992), p. 5.

Duplain, G.

Fogg, B. R.

B. R. Fogg, A. Wang, M. S. Miller, K. A. Murphy, R. O. Claus, in Fiber Optic Sensor-Based Smart Materials and Structures (Institute of Physics, Bristol, UK, 1992), p. 5.

Froehly, C.

Giovannini, H. R.

Gunther, M. F.

Huard, S. J.

Jackson, A.

J. S. Sirkis, D. D. Brennan, D. Webb, A. Jackson, Electron. Lett. 29, 896 (1993).
[CrossRef]

Jackson, D.

Lee, C. E.

C. E. Lee, H. F. Taylor, J. Lightwave Technol 9, 129 (1991).
[CrossRef]

Lequime, M. R.

Miller, M. S.

B. R. Fogg, A. Wang, M. S. Miller, K. A. Murphy, R. O. Claus, in Fiber Optic Sensor-Based Smart Materials and Structures (Institute of Physics, Bristol, UK, 1992), p. 5.

Murphy, K. A.

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, Opt. Lett. 16, 273 (1991).
[CrossRef] [PubMed]

B. R. Fogg, A. Wang, M. S. Miller, K. A. Murphy, R. O. Claus, in Fiber Optic Sensor-Based Smart Materials and Structures (Institute of Physics, Bristol, UK, 1992), p. 5.

Ning, Y.

Rao, Y.

Sandoz, P.

P. Sandoz, G. Tribilloon, J. Mod. Opt. 40, 1691 (1993).
[CrossRef]

Sirkis, J. S.

J. S. Sirkis, D. D. Brennan, D. Webb, A. Jackson, Electron. Lett. 29, 896 (1993).
[CrossRef]

Taylor, H. F.

C. E. Lee, H. F. Taylor, J. Lightwave Technol 9, 129 (1991).
[CrossRef]

Tribilloon, G.

P. Sandoz, G. Tribilloon, J. Mod. Opt. 40, 1691 (1993).
[CrossRef]

Vengsarkar, A. M.

Wang, A.

B. R. Fogg, A. Wang, M. S. Miller, K. A. Murphy, R. O. Claus, in Fiber Optic Sensor-Based Smart Materials and Structures (Institute of Physics, Bristol, UK, 1992), p. 5.

Webb, D.

J. S. Sirkis, D. D. Brennan, D. Webb, A. Jackson, Electron. Lett. 29, 896 (1993).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 246.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 321.

Yeddon, D.

Electron. Lett.

J. S. Sirkis, D. D. Brennan, D. Webb, A. Jackson, Electron. Lett. 29, 896 (1993).
[CrossRef]

J. Lightwave Technol

C. E. Lee, H. F. Taylor, J. Lightwave Technol 9, 129 (1991).
[CrossRef]

J. Mod. Opt.

P. Sandoz, G. Tribilloon, J. Mod. Opt. 40, 1691 (1993).
[CrossRef]

Opt. Lett.

Other

B. R. Fogg, A. Wang, M. S. Miller, K. A. Murphy, R. O. Claus, in Fiber Optic Sensor-Based Smart Materials and Structures (Institute of Physics, Bristol, UK, 1992), p. 5.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 246.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 321.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

White-light scanning fiber Michelson interferometer with the mirror reflector driven by an electric magnetic actuator.

Fig. 2
Fig. 2

Experimental results: (a) 30-μm gap length and (b) 150-μm gap length. In each figure the bottom trace shows the driving current to the actuator, the middle trace shows fringe patterns (patterns a and b corresponding to the fiber ends a and b in the sensing head, respectively; see Fig. 1), and the top trace is an expansion of a section of the middle trace.

Fig. 3
Fig. 3

Experimental data of the actuator driving current versus the gap lengths in the sensing head with a least-squares-fitted solid line.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

i ( Δ k ) = i 0 exp [ α 2 ( Δ k ) 2 ] , Δ k = k k 0 ,
V = ( I max I min ) / ( I max + I min ) ,
V = exp [ ( λ 0 ) 2 / ( 2 α Δ λ ) ] = exp [ ( L c / 2 α ) 2 ] ,
L c = ( λ 0 ) 2 / Δ λ ,
L c < 1.3 2 / [ 0.001 ( 20 100 ) ] = 85 17 ( μ m ) .
[ 2 ( λ / 2 ) 2 ] 1 / 2 = 1.4 λ / 2 = 0.9 μ m   ( 3 σ ) ,

Metrics