Abstract

For the first time to our knowledge, asymmetric pulse shapes and the linear and nonlinear chirp from a passively mode-locked semiconductor laser are directly measured. For the laser tuned to various center wavelengths, fall-time-to-rise-time ratios of 2.0 to 2.5 are measured. With the laser tuned to the shorter-wavelength side of its tuning range, a significant quadratic chirp of −60 fs/nm2 is measured, along with a linear chirp of −800 fs/nm. The nonlinear chirp is responsible for the asymmetrically shaped compressed pulses that produce long-tailed autocorrelations.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Silberberg, P. W. Smith, IEEE J. Quantum Electron. QE-22, 759 (1986).
    [CrossRef]
  2. P. J. Delfyett, L. Florez, N. Stoffel, T. Gmitter, N. Andreadakis, G. Alphonse, W. Ceislik, Opt. Lett. 17, 670 (1992).
    [CrossRef] [PubMed]
  3. R. A. Salvatore, T. Schrans, A. Yariv, IEEE Photon. Technol. Lett. 5, 756 (1993).
    [CrossRef]
  4. N. Stelmakh, J-M. Lourtioz, Electron. Lett. 29, 161 (1993).
    [CrossRef]
  5. P. Simon, N. Gerhardt, S. Szatmari, Opt. Quantum Electron. 23, 73 (1991).
    [CrossRef]
  6. D. J. Kane, R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
    [CrossRef]
  7. J. L. A. Chilla, O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
    [CrossRef]
  8. S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
    [CrossRef]
  9. H. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
    [CrossRef]
  10. A. M. Weiner, J. P. Heritage, E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
    [CrossRef]
  11. A. Dienes, J. P. Heritage, M. Y. Hong, Y. H. Chang, Opt. Lett. 17, 1602 (1992).
    [CrossRef] [PubMed]

1993 (3)

R. A. Salvatore, T. Schrans, A. Yariv, IEEE Photon. Technol. Lett. 5, 756 (1993).
[CrossRef]

N. Stelmakh, J-M. Lourtioz, Electron. Lett. 29, 161 (1993).
[CrossRef]

D. J. Kane, R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

1992 (2)

1991 (3)

P. Simon, N. Gerhardt, S. Szatmari, Opt. Quantum Electron. 23, 73 (1991).
[CrossRef]

J. L. A. Chilla, O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

1988 (1)

1986 (1)

Y. Silberberg, P. W. Smith, IEEE J. Quantum Electron. QE-22, 759 (1986).
[CrossRef]

1975 (1)

H. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

Alphonse, G.

Andreadakis, N.

Ceislik, W.

Chang, Y. H.

Chilla, J. L. A.

J. L. A. Chilla, O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

Delfyett, P. J.

Dienes, A.

Florez, L.

Gerhardt, N.

P. Simon, N. Gerhardt, S. Szatmari, Opt. Quantum Electron. 23, 73 (1991).
[CrossRef]

Gmitter, T.

Haus, H.

H. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

Heritage, J. P.

Hong, M. Y.

Kane, D. J.

D. J. Kane, R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Kirschner, E. M.

Lourtioz, J-M.

N. Stelmakh, J-M. Lourtioz, Electron. Lett. 29, 161 (1993).
[CrossRef]

Martinez, O. E.

J. L. A. Chilla, O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

Paslaski, J.

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

Salvatore, R. A.

R. A. Salvatore, T. Schrans, A. Yariv, IEEE Photon. Technol. Lett. 5, 756 (1993).
[CrossRef]

Sanders, S.

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

Schrans, T.

R. A. Salvatore, T. Schrans, A. Yariv, IEEE Photon. Technol. Lett. 5, 756 (1993).
[CrossRef]

Silberberg, Y.

Y. Silberberg, P. W. Smith, IEEE J. Quantum Electron. QE-22, 759 (1986).
[CrossRef]

Simon, P.

P. Simon, N. Gerhardt, S. Szatmari, Opt. Quantum Electron. 23, 73 (1991).
[CrossRef]

Smith, P. W.

Y. Silberberg, P. W. Smith, IEEE J. Quantum Electron. QE-22, 759 (1986).
[CrossRef]

Stelmakh, N.

N. Stelmakh, J-M. Lourtioz, Electron. Lett. 29, 161 (1993).
[CrossRef]

Stoffel, N.

Szatmari, S.

P. Simon, N. Gerhardt, S. Szatmari, Opt. Quantum Electron. 23, 73 (1991).
[CrossRef]

Trebino, R.

D. J. Kane, R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Ungar, J. E.

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

Weiner, A. M.

Yariv, A.

R. A. Salvatore, T. Schrans, A. Yariv, IEEE Photon. Technol. Lett. 5, 756 (1993).
[CrossRef]

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

Zarem, H. A.

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

Appl. Phys. Lett. (1)

S. Sanders, A. Yariv, J. Paslaski, J. E. Ungar, H. A. Zarem, Appl. Phys. Lett. 58, 681 (1991).
[CrossRef]

Electron. Lett. (1)

N. Stelmakh, J-M. Lourtioz, Electron. Lett. 29, 161 (1993).
[CrossRef]

IEEE J. Quantum Electron. (4)

Y. Silberberg, P. W. Smith, IEEE J. Quantum Electron. QE-22, 759 (1986).
[CrossRef]

H. Haus, IEEE J. Quantum Electron. QE-11, 736 (1975).
[CrossRef]

D. J. Kane, R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

J. L. A. Chilla, O. E. Martinez, IEEE J. Quantum Electron. 27, 1228 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. A. Salvatore, T. Schrans, A. Yariv, IEEE Photon. Technol. Lett. 5, 756 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

P. Simon, N. Gerhardt, S. Szatmari, Opt. Quantum Electron. 23, 73 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup of the cross-correlation system for measurement of the intensity envelope of pulses. An adjustable-position spatial filter is used in the Fourier plane for spectral filtering in chirp measurements only. BS’s, beam splitters; SHG, second-harmonic-generation.

Fig. 2
Fig. 2

Measured shape of the pulse leaving the semiconductor laser for the spectrum center tuned to (a) 848 nm and (b) 841 nm.

Fig. 3
Fig. 3

Measurement of the chirp in terms of group delay versus the rectangular filter’s center wavelength (dashed curve), yielding (a) −900 fs/nm and ±10 fs/nm2 for the laser tuned to 848 nm and (b) a nonlinear chirp (dashed curve) of −60 fs/nm2 for the laser tuned to 841 nm. The linear chirp of −800 fs/nm is shown for comparison (dotted curve).

Fig. 4
Fig. 4

Fit of the calculated (dashed curves) to the measured (solid curves) autocorrelation of the compressed pulse and the calculated compressed pulse intensity resulting from the fit (dotted curves) for the laser tuned to (a) 848 nm and (b) 841 nm. The fit shows that the nonlinear chirp is mainly quadratic.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d N a ( t ) d t = Γ A N a ( t ) P ( t ) ,
d N g ( t ) d t = Γ G N g ( t ) P ( t ) ,
F ( ω ) exp [ j τ n ( ω ω 0 ) ] exp [ ( ω ω f ) 2 ( Δ ω f ) 2 ] .
{ f ( t τ n ) * exp [ ( Δ ω f ) 2 ( t τ n ) 2 4 ] } exp ( j ω f t ) .
ϕ ( t ) = ω t k 0 L g [ n 0 + d n ( t ) d t t ] ,
Δ ω ( t ) = k 0 α [ ω , N g ( t ) ] Γ 2 G 2 N g ( t ) L g P ( t ) .

Metrics