Abstract

We present methods for minimizing error in soliton transmission systems consisting of fibers having a distribution in dispersion, D.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa, Y. Kodama, Opt. Lett. 16, 1385 (1991).
    [CrossRef] [PubMed]
  2. A. Mecozzi, J. D. Moores, H. A. Haus, Y. Lai, Opt. Lett. 16, 1841 (1991).
    [CrossRef] [PubMed]
  3. Y. Kodama, A. Hasegawa, Opt. Lett. 17, 31 (1992).
    [CrossRef] [PubMed]
  4. L. F. Mollenauer, J. P. Gordon, S. G. Evangelides, Opt. Lett. 17, 1575 (1992).
    [CrossRef] [PubMed]

1992 (2)

1991 (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Result of a numerical simulation for a system with fibers having a distribution in dispersion randomly connected at every zd/z0 ≃ 1/16: (a) without filters, (b) with sliding filters.

Fig. 2
Fig. 2

(a) Pair of fibers having almost an opposite deviation in dispersion from the average connected in series in decreasing order of the magnitude of the dispersion; (b) the simulation result.

Fig. 3
Fig. 3

(a) Arrangement of fiber pairs in which 1 is further minimized; (b) the simulation result. Reduction of the dispersive wave and the amplitude oscillation of the soliton is seen.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

D ˜ ( z ) = 0 Z [ D ( Z ) D ] d Z ,
D ( Z ) = j = 1 N D j { H [ Z ( j 1 ) Z d ] H ( Z j Z d ) } ,
i q Z + 1 2 d ( Z ) 2 q T 2 + | q | 2 q = i Γ q + i G ( Z ) q .
q ( Z , T ) = a ( Z ) u ( T , Z ) ,
d a d Z = [ Γ G ( Z ) ] a ,
u Z = i 1 2 d ( Z ) 2 u T 2 + i a 2 ( Z ) | u | 2 u , X 0 [ u , u * ] + d ˜ ( Z ) X 0 D [ u , u * ] + a ˜ ( Z ) X 0 N [ u , u * ] .
d ˜ ( Z ) = d ( Z ) 1 ,
a ˜ ( Z ) = a 2 ( Z ) 1 ,
X 0 [ u , u * ] = i 1 2 2 u T 2 + i | u | 2 u ,
X 0 D = i 1 2 2 u T 2 ,
X 0 N = i | u | 2 u .
u = exp ( φ ) v = v + φ [ v , v * ; Z ] + 1 2 ( φ φ ) [ v , v * ; Z ] + ,
φ = n = 0 ( φ nT v nT + φ nT * v nT * ) ,
d v d Z = X 0 [ v , v * ; Z ] + Y [ v , v * ; Z ] ,
d d Z = Z + d v d Z .
d v d Z = X 0 [ v , v * ] .
φ = φ 1 + φ 2 + , Y = Y 1 + Y 2 + .
φ 1 Z = d ˜ ( Z ) X 0 D [ v , v * ] + a ˜ ( Z ) X 0 N [ v , v * ] ,
φ 1 [ v , v * ; Z ] = d ˜ 1 ( Z ) X 0 D [ v , v * ] + a ˜ 1 ( Z ) X 0 N [ v , v * ] ,
d a ˜ 1 d Z = a ˜ , 1 Z a 0 Z a a ˜ 1 ( Z + n Z a ) d Z = 0 for all n = 0 , 1 , 2 , ,
d d ˜ 1 d Z = d ˜ or d ˜ 1 ( Z ) = 0 Z d ˜ ( Z ) d Z .
D 2 n 1 D ( D 2 n D ) , n = 1 , 2 , 3 , .
| D 2 n 1 D | > | D 2 n + 1 D | , n = 1 , 2 , 3 , ,

Metrics