Abstract

A device that extracts a sample of configurable length from a 1550-nm communication signal under the command of a pulsed light beam is presented. The device is realized by means of two CdTe:In optical switches; it has 10-ns rise and fall times and a sampling window of the duration of a microsecond. The photonic sampler is fully transparent to the optical communication signals in the third window.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Ruckmann, J. Kornack, J. Kolenda, M. Petrauskaus, Appl. Phys. A 55, 30 (1992).
    [CrossRef]
  2. M. S. Petrovic, A. Suchocki, R. C. Powell, G. C. Valley, G. Cantwell, Phys. Rev. B 43, 2228 (1991).
    [CrossRef]
  3. W. H. Steier, J. Kumar, M. Ziari, Opt. Lett. 14, 224 (1989).
    [CrossRef] [PubMed]
  4. V. P. Karpenko, P. G. Kasherininov, O. A. Matveev, Sov. Phys. Semicond. 4, 794 (1970).
  5. M. Ziari, W. H. Steier, R. L. Devine, Appl. Opt. 29, 2074 (1990).
    [CrossRef] [PubMed]

1992 (1)

I. Ruckmann, J. Kornack, J. Kolenda, M. Petrauskaus, Appl. Phys. A 55, 30 (1992).
[CrossRef]

1991 (1)

M. S. Petrovic, A. Suchocki, R. C. Powell, G. C. Valley, G. Cantwell, Phys. Rev. B 43, 2228 (1991).
[CrossRef]

1990 (1)

1989 (1)

1970 (1)

V. P. Karpenko, P. G. Kasherininov, O. A. Matveev, Sov. Phys. Semicond. 4, 794 (1970).

Cantwell, G.

M. S. Petrovic, A. Suchocki, R. C. Powell, G. C. Valley, G. Cantwell, Phys. Rev. B 43, 2228 (1991).
[CrossRef]

Devine, R. L.

Karpenko, V. P.

V. P. Karpenko, P. G. Kasherininov, O. A. Matveev, Sov. Phys. Semicond. 4, 794 (1970).

Kasherininov, P. G.

V. P. Karpenko, P. G. Kasherininov, O. A. Matveev, Sov. Phys. Semicond. 4, 794 (1970).

Kolenda, J.

I. Ruckmann, J. Kornack, J. Kolenda, M. Petrauskaus, Appl. Phys. A 55, 30 (1992).
[CrossRef]

Kornack, J.

I. Ruckmann, J. Kornack, J. Kolenda, M. Petrauskaus, Appl. Phys. A 55, 30 (1992).
[CrossRef]

Kumar, J.

Matveev, O. A.

V. P. Karpenko, P. G. Kasherininov, O. A. Matveev, Sov. Phys. Semicond. 4, 794 (1970).

Petrauskaus, M.

I. Ruckmann, J. Kornack, J. Kolenda, M. Petrauskaus, Appl. Phys. A 55, 30 (1992).
[CrossRef]

Petrovic, M. S.

M. S. Petrovic, A. Suchocki, R. C. Powell, G. C. Valley, G. Cantwell, Phys. Rev. B 43, 2228 (1991).
[CrossRef]

Powell, R. C.

M. S. Petrovic, A. Suchocki, R. C. Powell, G. C. Valley, G. Cantwell, Phys. Rev. B 43, 2228 (1991).
[CrossRef]

Ruckmann, I.

I. Ruckmann, J. Kornack, J. Kolenda, M. Petrauskaus, Appl. Phys. A 55, 30 (1992).
[CrossRef]

Steier, W. H.

Suchocki, A.

M. S. Petrovic, A. Suchocki, R. C. Powell, G. C. Valley, G. Cantwell, Phys. Rev. B 43, 2228 (1991).
[CrossRef]

Valley, G. C.

M. S. Petrovic, A. Suchocki, R. C. Powell, G. C. Valley, G. Cantwell, Phys. Rev. B 43, 2228 (1991).
[CrossRef]

Ziari, M.

Appl. Opt. (1)

Appl. Phys. A (1)

I. Ruckmann, J. Kornack, J. Kolenda, M. Petrauskaus, Appl. Phys. A 55, 30 (1992).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

M. S. Petrovic, A. Suchocki, R. C. Powell, G. C. Valley, G. Cantwell, Phys. Rev. B 43, 2228 (1991).
[CrossRef]

Sov. Phys. Semicond. (1)

V. P. Karpenko, P. G. Kasherininov, O. A. Matveev, Sov. Phys. Semicond. 4, 794 (1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of the PS. The electro-optics and photoconductive properties of the CdTe:In-doped monocrystals permit fabrication of a PCOS that has a fast turn-on time and a slow turn-off time (or photomemory). When two PCOS’s are excited sequentially by a control pulse, a PC results whose behavior is described in the table.

Fig. 2
Fig. 2

(a) Response of a typical PCOS. The fast turn-on time is shown. Top: The 1064-nm control pulse opens the switch that permits the signal to pass through for time τoff. Bottom: The 1550-nm signal from the PCOS. (b) Turn-on time τon connected to the free-carrier generation process as a function of the power density of the 1064-nm control beam.

Fig. 3
Fig. 3

Experimental PS. The signal beam from an optical transmitter enters the PS, which is pulsed by two control beams generated by a Nd:YAG laser. One of the control beams is delayed by 70 m of fiber. The communication and the sampled signals are captured by a digital signal analyzer.

Fig. 4
Fig. 4

PS produced by use of two PCOS’s in sequence permits sampling of a signal stream with rise and fall times determined by the turn-on time of the switch. The long constant time that characterizes the photomemory effect of the CdTe:In allows the open window to remain approximately flat.

Fig. 5
Fig. 5

Sampled signals. Top: Continuous stream of bits generated at 33-MHz frequency: upper trace, monitor signal, a continuous stream of bits; lower trace, the sampled signal. Bottom: Repeated word generated at the same frequency: upper trace, monitor signal, the 〈. . . 1 1 1 1 0 0 . . .〉 word; lower trace, the sampled signal.

Metrics