Abstract

We report an optoelectronic feedback loop that permits the active stabilization of an interferometric setup for any chosen value of the phase between the interfering beams. This method is based on phase modulation and homodyne detection techniques. The phase can be stabilized with a precision of better than 1 deg for our experimental conditions.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, D. A. Jackson, M. Corke, Electron. Lett. 18, 392 (1982).
    [CrossRef]
  2. P. Günter, in Photorefractive Materials and Their Applications I,P. Günter, J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  3. D. B. Neumann, H. W. Rose, Appl. Opt. 6, 1097 (1967).
    [CrossRef] [PubMed]
  4. D. R. MacQuigg, Appl. Opt. 16, 291 (1977).
    [CrossRef] [PubMed]
  5. D. A. Jackson, R. Priest, A. Dandridge, A. B. Tveten, Appl. Opt. 19, 2926 (1980).
    [CrossRef] [PubMed]
  6. J. Frejlich, L. Cescato, G. F. Mendes, Appl. Opt. 27, 1967 (1988).
    [CrossRef] [PubMed]
  7. E. Barbosa, J. Frejlich, V. V. Prokofiev, H. Gallo, J. P. Andreeta, Opt. Eng. 33, 2659 (1994).
    [CrossRef]
  8. S. Johansson, L. E. Nilsson, K. Biedermann, K. Kleveby, “Holographic diffraction gratings with asymmetric groove profiles,” in Proceedings of the ICO Conference on Holography and Optical Data Processing (Pergamon, London, 1976), pp. 521–530.
  9. A. Marrakchi, R. V. Johnson, J. A. R. Tanguay, J. Opt. Soc. Am. B 3, 321 (1986).
    [CrossRef]

1994 (1)

E. Barbosa, J. Frejlich, V. V. Prokofiev, H. Gallo, J. P. Andreeta, Opt. Eng. 33, 2659 (1994).
[CrossRef]

1988 (1)

1986 (1)

1982 (1)

A. D. Kersey, D. A. Jackson, M. Corke, Electron. Lett. 18, 392 (1982).
[CrossRef]

1980 (1)

1977 (1)

1967 (1)

Andreeta, J. P.

E. Barbosa, J. Frejlich, V. V. Prokofiev, H. Gallo, J. P. Andreeta, Opt. Eng. 33, 2659 (1994).
[CrossRef]

Barbosa, E.

E. Barbosa, J. Frejlich, V. V. Prokofiev, H. Gallo, J. P. Andreeta, Opt. Eng. 33, 2659 (1994).
[CrossRef]

Biedermann, K.

S. Johansson, L. E. Nilsson, K. Biedermann, K. Kleveby, “Holographic diffraction gratings with asymmetric groove profiles,” in Proceedings of the ICO Conference on Holography and Optical Data Processing (Pergamon, London, 1976), pp. 521–530.

Cescato, L.

Corke, M.

A. D. Kersey, D. A. Jackson, M. Corke, Electron. Lett. 18, 392 (1982).
[CrossRef]

Dandridge, A.

Frejlich, J.

E. Barbosa, J. Frejlich, V. V. Prokofiev, H. Gallo, J. P. Andreeta, Opt. Eng. 33, 2659 (1994).
[CrossRef]

J. Frejlich, L. Cescato, G. F. Mendes, Appl. Opt. 27, 1967 (1988).
[CrossRef] [PubMed]

Gallo, H.

E. Barbosa, J. Frejlich, V. V. Prokofiev, H. Gallo, J. P. Andreeta, Opt. Eng. 33, 2659 (1994).
[CrossRef]

Günter, P.

P. Günter, in Photorefractive Materials and Their Applications I,P. Günter, J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
[CrossRef]

Jackson, D. A.

Johansson, S.

S. Johansson, L. E. Nilsson, K. Biedermann, K. Kleveby, “Holographic diffraction gratings with asymmetric groove profiles,” in Proceedings of the ICO Conference on Holography and Optical Data Processing (Pergamon, London, 1976), pp. 521–530.

Johnson, R. V.

Kersey, A. D.

A. D. Kersey, D. A. Jackson, M. Corke, Electron. Lett. 18, 392 (1982).
[CrossRef]

Kleveby, K.

S. Johansson, L. E. Nilsson, K. Biedermann, K. Kleveby, “Holographic diffraction gratings with asymmetric groove profiles,” in Proceedings of the ICO Conference on Holography and Optical Data Processing (Pergamon, London, 1976), pp. 521–530.

MacQuigg, D. R.

Marrakchi, A.

Mendes, G. F.

Neumann, D. B.

Nilsson, L. E.

S. Johansson, L. E. Nilsson, K. Biedermann, K. Kleveby, “Holographic diffraction gratings with asymmetric groove profiles,” in Proceedings of the ICO Conference on Holography and Optical Data Processing (Pergamon, London, 1976), pp. 521–530.

Priest, R.

Prokofiev, V. V.

E. Barbosa, J. Frejlich, V. V. Prokofiev, H. Gallo, J. P. Andreeta, Opt. Eng. 33, 2659 (1994).
[CrossRef]

Rose, H. W.

Tanguay, J. A. R.

Tveten, A. B.

Appl. Opt. (4)

Electron. Lett. (1)

A. D. Kersey, D. A. Jackson, M. Corke, Electron. Lett. 18, 392 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

E. Barbosa, J. Frejlich, V. V. Prokofiev, H. Gallo, J. P. Andreeta, Opt. Eng. 33, 2659 (1994).
[CrossRef]

Other (2)

S. Johansson, L. E. Nilsson, K. Biedermann, K. Kleveby, “Holographic diffraction gratings with asymmetric groove profiles,” in Proceedings of the ICO Conference on Holography and Optical Data Processing (Pergamon, London, 1976), pp. 521–530.

P. Günter, in Photorefractive Materials and Their Applications I,P. Günter, J.-P. Huignard, eds., Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Stabilized interferometer scheme: BS’s, beam splitters; M, mirror; PZT, piezoelectric-supported mirror; D, photodetector; OSC, function generator; HV, high-voltage source; BP’s, bandpass filters; PS, phase shifter; FD, frequency doubler; A, amplifier.

Fig. 2
Fig. 2

Stabilized evolution of the photodetector output VD (in volts) for θS equal to A, 0; B, 30°; C, 60°; D, 90°; E, 30°; F, 60°; G, 90°; H, 120°; I, 150°; and J, 180°. The first part of the figure (0 – 1.7 min) shows the evolution of I without stabilization: The peak-to-peak amplitude for I permits computation of the actual value for ψ for each one of the steps from A to J and is represented by the dashed lines.

Fig. 3
Fig. 3

Evolution of the lock-in output signals, VX and VY, without stabilization (0 – 1.7 min) and in the stabilized mode (1.7– 6.0 min) for the same preset values of θS chosen for Fig. 2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I Ω = 4 J 1 ( ψ d ) I S I R sin ψ sin ( Ω t ) ,
I 2 Ω = 4 J 2 ( ψ d ) I S I R cos ψ cos ( 2 Ω t ) .
V 1 = V 0 sin ( ψ ) sin ( 2 Ω t + ) ,
V 2 = V 0 cos ( ψ ) cos ( 2 Ω t + ) ,
V + = V 0 cos ( 2 Ω t ψ + ) .
V X = V 0 sin ( ψ θ S ) ,
V Y = V 0 cos ( ψ θ S ) .

Metrics