Abstract

Many animals have visual systems that exploit the polarization of light, and some of these systems are thought to compute difference signals in parallel from arrays of photoreceptors optimally tuned to orthogonal polarizations. We hypothesize that such polarization – difference systems can improve the visibility of objects in scattering media by serving as common-mode rejection amplifiers that reduce the effects of background scattering and amplify the signal from targets whose polarization-difference magnitude is distinct from the background. We present experimental results obtained with a target in a highly scattering medium, demonstrating that a manmade polarization-difference system can render readily visible surface features invisible to conventional imaging.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Lythgoe, The Ecology of Vision (Oxford U. Press, London, 1979), pp. 112–127.
  2. S. Q. Duntley, J. Opt. Soc. Am. 53, 214 (1963).
    [Crossref]
  3. S. Q. Duntley, in Optical Aspects of Oceanography, N. G. Jerlov, E. Steemann Nielsen, eds. (Academic, New York, 1974), pp. 135–149.
  4. K. von Frisch, Experientia 5, 142 (1949).
    [Crossref]
  5. T. H. Waterman, in Vision in Invertebrates, H. Autrum, ed., Vol. VII/6B of the Handbook of Sensory Physiology (Springer-Verlag, New York, 1981), pp. 281–469.
    [Crossref]
  6. J. N. Lythgoe, C. C. Hemmings, Nature (London) 213, 893 (1967).
    [Crossref] [PubMed]
  7. D. A. Cameron, E. N. Pugh, Nature (London) 353, 161 (1991).
    [Crossref] [PubMed]
  8. M. P. Rowe, N. Engheta, S. S. Easter, E. N. Pugh, J. Opt. Soc. Am. A 11, 55 (1994).
    [Crossref]
  9. G. P. Können, Polarized Light in Nature (Cambridge U. Press, London, 1985), pp. 74–99.
  10. J. S. Tyo, University of Pennsylvania, Philadelphia, Pa. (undergraduate senior design project, 1994).
  11. G. D. Gilbert, J. C. Pernicka, in Underwater Photo-Optics, Seminar Proceedings (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1966), p. AIII-1.
  12. B. A. Swartz, J. D. Cummings, Proc. Soc. Photo-Opt. Instrum. Eng. 1537, 42 (1991).
  13. J. E. Solomon, Appl. Opt., 20, 1537 (1981).
    [Crossref] [PubMed]
  14. G. F. J. Garlick, G. A. Steigmann, W. E. Lamb, U.S. patent3,992,571 (November16, 1976).
  15. W. G. Egan, W. R. Johnson, V. S. Whitehead, Appl. Opt. 30, 435 (1991).
    [Crossref] [PubMed]
  16. J. Halajian, H. Hallock, in Proceedings of 8th Symposium on Remote Sensing and Environment 1 (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1972), p. 523.
  17. R. Walraven, Proc. Soc. Photo-Opt. Instrum. Eng. 112, 164 (1977).

1994 (1)

1991 (3)

B. A. Swartz, J. D. Cummings, Proc. Soc. Photo-Opt. Instrum. Eng. 1537, 42 (1991).

W. G. Egan, W. R. Johnson, V. S. Whitehead, Appl. Opt. 30, 435 (1991).
[Crossref] [PubMed]

D. A. Cameron, E. N. Pugh, Nature (London) 353, 161 (1991).
[Crossref] [PubMed]

1981 (1)

1977 (1)

R. Walraven, Proc. Soc. Photo-Opt. Instrum. Eng. 112, 164 (1977).

1967 (1)

J. N. Lythgoe, C. C. Hemmings, Nature (London) 213, 893 (1967).
[Crossref] [PubMed]

1963 (1)

1949 (1)

K. von Frisch, Experientia 5, 142 (1949).
[Crossref]

Cameron, D. A.

D. A. Cameron, E. N. Pugh, Nature (London) 353, 161 (1991).
[Crossref] [PubMed]

Cummings, J. D.

B. A. Swartz, J. D. Cummings, Proc. Soc. Photo-Opt. Instrum. Eng. 1537, 42 (1991).

Duntley, S. Q.

S. Q. Duntley, J. Opt. Soc. Am. 53, 214 (1963).
[Crossref]

S. Q. Duntley, in Optical Aspects of Oceanography, N. G. Jerlov, E. Steemann Nielsen, eds. (Academic, New York, 1974), pp. 135–149.

Easter, S. S.

Egan, W. G.

Engheta, N.

Garlick, G. F. J.

G. F. J. Garlick, G. A. Steigmann, W. E. Lamb, U.S. patent3,992,571 (November16, 1976).

Gilbert, G. D.

G. D. Gilbert, J. C. Pernicka, in Underwater Photo-Optics, Seminar Proceedings (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1966), p. AIII-1.

Halajian, J.

J. Halajian, H. Hallock, in Proceedings of 8th Symposium on Remote Sensing and Environment 1 (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1972), p. 523.

Hallock, H.

J. Halajian, H. Hallock, in Proceedings of 8th Symposium on Remote Sensing and Environment 1 (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1972), p. 523.

Hemmings, C. C.

J. N. Lythgoe, C. C. Hemmings, Nature (London) 213, 893 (1967).
[Crossref] [PubMed]

Johnson, W. R.

Können, G. P.

G. P. Können, Polarized Light in Nature (Cambridge U. Press, London, 1985), pp. 74–99.

Lamb, W. E.

G. F. J. Garlick, G. A. Steigmann, W. E. Lamb, U.S. patent3,992,571 (November16, 1976).

Lythgoe, J. N.

J. N. Lythgoe, C. C. Hemmings, Nature (London) 213, 893 (1967).
[Crossref] [PubMed]

J. N. Lythgoe, The Ecology of Vision (Oxford U. Press, London, 1979), pp. 112–127.

Pernicka, J. C.

G. D. Gilbert, J. C. Pernicka, in Underwater Photo-Optics, Seminar Proceedings (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1966), p. AIII-1.

Pugh, E. N.

Rowe, M. P.

Solomon, J. E.

Steigmann, G. A.

G. F. J. Garlick, G. A. Steigmann, W. E. Lamb, U.S. patent3,992,571 (November16, 1976).

Swartz, B. A.

B. A. Swartz, J. D. Cummings, Proc. Soc. Photo-Opt. Instrum. Eng. 1537, 42 (1991).

Tyo, J. S.

J. S. Tyo, University of Pennsylvania, Philadelphia, Pa. (undergraduate senior design project, 1994).

von Frisch, K.

K. von Frisch, Experientia 5, 142 (1949).
[Crossref]

Walraven, R.

R. Walraven, Proc. Soc. Photo-Opt. Instrum. Eng. 112, 164 (1977).

Waterman, T. H.

T. H. Waterman, in Vision in Invertebrates, H. Autrum, ed., Vol. VII/6B of the Handbook of Sensory Physiology (Springer-Verlag, New York, 1981), pp. 281–469.
[Crossref]

Whitehead, V. S.

Appl. Opt. (2)

Experientia (1)

K. von Frisch, Experientia 5, 142 (1949).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nature (2)

J. N. Lythgoe, C. C. Hemmings, Nature (London) 213, 893 (1967).
[Crossref] [PubMed]

D. A. Cameron, E. N. Pugh, Nature (London) 353, 161 (1991).
[Crossref] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

B. A. Swartz, J. D. Cummings, Proc. Soc. Photo-Opt. Instrum. Eng. 1537, 42 (1991).

R. Walraven, Proc. Soc. Photo-Opt. Instrum. Eng. 112, 164 (1977).

Other (8)

J. N. Lythgoe, The Ecology of Vision (Oxford U. Press, London, 1979), pp. 112–127.

J. Halajian, H. Hallock, in Proceedings of 8th Symposium on Remote Sensing and Environment 1 (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1972), p. 523.

G. F. J. Garlick, G. A. Steigmann, W. E. Lamb, U.S. patent3,992,571 (November16, 1976).

G. P. Können, Polarized Light in Nature (Cambridge U. Press, London, 1985), pp. 74–99.

J. S. Tyo, University of Pennsylvania, Philadelphia, Pa. (undergraduate senior design project, 1994).

G. D. Gilbert, J. C. Pernicka, in Underwater Photo-Optics, Seminar Proceedings (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1966), p. AIII-1.

S. Q. Duntley, in Optical Aspects of Oceanography, N. G. Jerlov, E. Steemann Nielsen, eds. (Academic, New York, 1974), pp. 135–149.

T. H. Waterman, in Vision in Invertebrates, H. Autrum, ed., Vol. VII/6B of the Handbook of Sensory Physiology (Springer-Verlag, New York, 1981), pp. 281–469.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Top: the top view of the experimental setup. A, polarization analyzer; TNLC, twisted nematic liquid crystal; F, narrow-band filter. Bottom: the front view of the tank (drawn to scale) with inside dimensions of 30 cm × 30 cm × 15 cm. This tank is filled with water to which 5 mL of whole milk is added. The measured beam attenuation coefficient for a 632.8-nm laser beam is 19.7 m−1. Thus the tank depth is ∼2.9 attenuation lengths at this milk concentration. The sensitivity of the imaging system at 610 nm is ∼4.4 × 10−7 display units/(quanta s−1) (in 8-bit display).

Fig. 2
Fig. 2

Application of the PDI system to an aluminum target suspended in diluted milk as illustrated in Fig. 1. A, B, The images I(x, y) and I(x, y) convolved digitally with a two-dimensional low-pass spatial filter. This filter is roughly a truncated Gaussian, with maximal linear extent ∼5 pixel widths; the images of the abraded patches are ≈80 × 92 pixels. The filter removes a periodic high-spatial-frequency artifact produced by the imaging system. Image intensities (ordinates) are expressed in the units of the 8-bit display. C, D, PSI (x, y)/2 and PDI (x, y) + 128, respectively [cf. Eqs. (1a) and (1b)]; an offset of 128 was used, because most pixel values of PDI (x, y) are near zero and can be positive or negative. E, F, The data of C and D, respectively, but transformed with affine transformations. The transformed values are given by PSI (x, y)trans = αPS[PSI (x, y) − PSI (x, y)min] and by PDI (x, y)trans = αPD[PDI (x, y) − PDI (x, y)min], where αPS = 255/[PSI (x, y)maxPSI (x, y)min], and similarly for αPD. In E, PSI (x, y)max and PSI (x, y)min were obtained from the disk region only; the resultant scale factor, αPS ≈ 6.4, is such that the intensity variation of the disk region occupies the full display range. In F, PDI (x, y)max and PDI (x, y)min were obtained from the entire image, yielding αPD ≈ 38.4. Abraded patches, not visible in A–D, are clearly visible in F but practically invisible in E. The vertical bands of pixels in the pixel regions y1yy2, as shown by the arrows at the right of panels B, D, and F, were averaged over y to generate numerical plots (as a function of x) shown in A′–F′.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I PD ( x , y ) = I | | ( x , y ) I ( x , y ) ,
I PD ( x , y ) = I | | ( x , y ) + I ( x , y ) .

Metrics