Abstract

Using a fiber-optic stimulated-Brillouin-scattering amplifier as an active filter, we have demonstrated optical clock recovery from 5-Gbit/s return-to-zero-format optical data. Definite patterns and pseudorandom bit sequences were tested. This scheme requires no prior knowledge of the clock frequency and is well suited for operation at higher data rates.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Miyamoto, H. Kawakami, T. Kataoka, K. Hagimoto, in Conference on Optical Amplifiers and Their Applications, Vol. 14 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper MD12.
  2. M. Jinno, T. Matsumoto, IEEE J. Quantum Electron. 28, 895 (1992).
    [CrossRef]
  3. U. Feiste, D. J. As, A. Ehrhardt, IEEE Photon. Technol. Lett. 6, 106 (1994).
    [CrossRef]
  4. A. D. Ellis, T. Widdowson, X. Shan, G. E. Wickens, D. M. Spirit, Electron. Lett. 29, 990 (1993).
    [CrossRef]
  5. T. Morioka, S. Kawanishi, K. Uchiyama, H. Takara, M. Saruwatari, Electron. Lett. 30, 591 (1994).
    [CrossRef]
  6. M. Saruwatari, in Conference on Optical Networks and Their Enabling Technologies (Institute of Electrical and Electronics Engineers, New York, 1994), paper W1.1.
  7. J. S. Wey, J. Goldhar, D. W. Rush, M. W. Chbat, G. M. Carter, G. L. Burdge, IEEE Photon. Technol. Lett. 7, 152 (1995).
    [CrossRef]
  8. K. J. Blow, N. J. Doran, B. K. Nayar, B. P. Nelson, Opt. Lett. 15, 248 (1990).
    [CrossRef] [PubMed]

1995

J. S. Wey, J. Goldhar, D. W. Rush, M. W. Chbat, G. M. Carter, G. L. Burdge, IEEE Photon. Technol. Lett. 7, 152 (1995).
[CrossRef]

1994

U. Feiste, D. J. As, A. Ehrhardt, IEEE Photon. Technol. Lett. 6, 106 (1994).
[CrossRef]

T. Morioka, S. Kawanishi, K. Uchiyama, H. Takara, M. Saruwatari, Electron. Lett. 30, 591 (1994).
[CrossRef]

1993

A. D. Ellis, T. Widdowson, X. Shan, G. E. Wickens, D. M. Spirit, Electron. Lett. 29, 990 (1993).
[CrossRef]

1992

M. Jinno, T. Matsumoto, IEEE J. Quantum Electron. 28, 895 (1992).
[CrossRef]

1990

As, D. J.

U. Feiste, D. J. As, A. Ehrhardt, IEEE Photon. Technol. Lett. 6, 106 (1994).
[CrossRef]

Blow, K. J.

Burdge, G. L.

J. S. Wey, J. Goldhar, D. W. Rush, M. W. Chbat, G. M. Carter, G. L. Burdge, IEEE Photon. Technol. Lett. 7, 152 (1995).
[CrossRef]

Carter, G. M.

J. S. Wey, J. Goldhar, D. W. Rush, M. W. Chbat, G. M. Carter, G. L. Burdge, IEEE Photon. Technol. Lett. 7, 152 (1995).
[CrossRef]

Chbat, M. W.

J. S. Wey, J. Goldhar, D. W. Rush, M. W. Chbat, G. M. Carter, G. L. Burdge, IEEE Photon. Technol. Lett. 7, 152 (1995).
[CrossRef]

Doran, N. J.

Ehrhardt, A.

U. Feiste, D. J. As, A. Ehrhardt, IEEE Photon. Technol. Lett. 6, 106 (1994).
[CrossRef]

Ellis, A. D.

A. D. Ellis, T. Widdowson, X. Shan, G. E. Wickens, D. M. Spirit, Electron. Lett. 29, 990 (1993).
[CrossRef]

Feiste, U.

U. Feiste, D. J. As, A. Ehrhardt, IEEE Photon. Technol. Lett. 6, 106 (1994).
[CrossRef]

Goldhar, J.

J. S. Wey, J. Goldhar, D. W. Rush, M. W. Chbat, G. M. Carter, G. L. Burdge, IEEE Photon. Technol. Lett. 7, 152 (1995).
[CrossRef]

Hagimoto, K.

Y. Miyamoto, H. Kawakami, T. Kataoka, K. Hagimoto, in Conference on Optical Amplifiers and Their Applications, Vol. 14 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper MD12.

Jinno, M.

M. Jinno, T. Matsumoto, IEEE J. Quantum Electron. 28, 895 (1992).
[CrossRef]

Kataoka, T.

Y. Miyamoto, H. Kawakami, T. Kataoka, K. Hagimoto, in Conference on Optical Amplifiers and Their Applications, Vol. 14 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper MD12.

Kawakami, H.

Y. Miyamoto, H. Kawakami, T. Kataoka, K. Hagimoto, in Conference on Optical Amplifiers and Their Applications, Vol. 14 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper MD12.

Kawanishi, S.

T. Morioka, S. Kawanishi, K. Uchiyama, H. Takara, M. Saruwatari, Electron. Lett. 30, 591 (1994).
[CrossRef]

Matsumoto, T.

M. Jinno, T. Matsumoto, IEEE J. Quantum Electron. 28, 895 (1992).
[CrossRef]

Miyamoto, Y.

Y. Miyamoto, H. Kawakami, T. Kataoka, K. Hagimoto, in Conference on Optical Amplifiers and Their Applications, Vol. 14 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper MD12.

Morioka, T.

T. Morioka, S. Kawanishi, K. Uchiyama, H. Takara, M. Saruwatari, Electron. Lett. 30, 591 (1994).
[CrossRef]

Nayar, B. K.

Nelson, B. P.

Rush, D. W.

J. S. Wey, J. Goldhar, D. W. Rush, M. W. Chbat, G. M. Carter, G. L. Burdge, IEEE Photon. Technol. Lett. 7, 152 (1995).
[CrossRef]

Saruwatari, M.

T. Morioka, S. Kawanishi, K. Uchiyama, H. Takara, M. Saruwatari, Electron. Lett. 30, 591 (1994).
[CrossRef]

M. Saruwatari, in Conference on Optical Networks and Their Enabling Technologies (Institute of Electrical and Electronics Engineers, New York, 1994), paper W1.1.

Shan, X.

A. D. Ellis, T. Widdowson, X. Shan, G. E. Wickens, D. M. Spirit, Electron. Lett. 29, 990 (1993).
[CrossRef]

Spirit, D. M.

A. D. Ellis, T. Widdowson, X. Shan, G. E. Wickens, D. M. Spirit, Electron. Lett. 29, 990 (1993).
[CrossRef]

Takara, H.

T. Morioka, S. Kawanishi, K. Uchiyama, H. Takara, M. Saruwatari, Electron. Lett. 30, 591 (1994).
[CrossRef]

Uchiyama, K.

T. Morioka, S. Kawanishi, K. Uchiyama, H. Takara, M. Saruwatari, Electron. Lett. 30, 591 (1994).
[CrossRef]

Wey, J. S.

J. S. Wey, J. Goldhar, D. W. Rush, M. W. Chbat, G. M. Carter, G. L. Burdge, IEEE Photon. Technol. Lett. 7, 152 (1995).
[CrossRef]

Wickens, G. E.

A. D. Ellis, T. Widdowson, X. Shan, G. E. Wickens, D. M. Spirit, Electron. Lett. 29, 990 (1993).
[CrossRef]

Widdowson, T.

A. D. Ellis, T. Widdowson, X. Shan, G. E. Wickens, D. M. Spirit, Electron. Lett. 29, 990 (1993).
[CrossRef]

Electron. Lett.

A. D. Ellis, T. Widdowson, X. Shan, G. E. Wickens, D. M. Spirit, Electron. Lett. 29, 990 (1993).
[CrossRef]

T. Morioka, S. Kawanishi, K. Uchiyama, H. Takara, M. Saruwatari, Electron. Lett. 30, 591 (1994).
[CrossRef]

IEEE J. Quantum Electron.

M. Jinno, T. Matsumoto, IEEE J. Quantum Electron. 28, 895 (1992).
[CrossRef]

IEEE Photon. Technol. Lett.

U. Feiste, D. J. As, A. Ehrhardt, IEEE Photon. Technol. Lett. 6, 106 (1994).
[CrossRef]

J. S. Wey, J. Goldhar, D. W. Rush, M. W. Chbat, G. M. Carter, G. L. Burdge, IEEE Photon. Technol. Lett. 7, 152 (1995).
[CrossRef]

Opt. Lett.

Other

Y. Miyamoto, H. Kawakami, T. Kataoka, K. Hagimoto, in Conference on Optical Amplifiers and Their Applications, Vol. 14 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), paper MD12.

M. Saruwatari, in Conference on Optical Networks and Their Enabling Technologies (Institute of Electrical and Electronics Engineers, New York, 1994), paper W1.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. A portion of the input to the SBS clock recovery loop is downshifted to the Stokes frequency by Mod 2. Strong spectral components within the Stokes wave experience the highest gain from the SBS interaction and become the output clock. The laser is a mode-locked erbium fiber ring laser. EDFA, erbium-doped fiber amplifier; ISO, isolator; PC1–3, polarization controllers; Mod 1 and 2, modulators; PM, polarization-maintaining.

Fig. 2
Fig. 2

Calibrated SBS spectrum. With the modulator off the SBS signal starts from broadband noise. With the modulator on the SBS is dominated by the Stokes seed that causes the signal to grow stronger and its spectrum to narrow.

Fig. 3
Fig. 3

Regeneration of clock from repeated digital word input. The top trace shows the complete digital sequence input to the clock recovery loop. The bottom trace shows the clock with the missing pulses regenerated.

Fig. 4
Fig. 4

Regeneration of clock from 223 − 1 pseudorandom-bit-sequence input. The upper trace shows the eye pattern of this input observed on a sampling oscilloscope. The resulting output of the clock recovery system is shown in the lower trace.

Fig. 5
Fig. 5

Calculated optical spectrum of a randomly modulated 5-Gbit/s return-to-zero data stream. The peaks are spaced at 5-GHz intervals, whereas the information-bearing spectrum is spread out over a continuum at lower power levels.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SNR ν clock Δ ν SBS ,

Metrics