Abstract

We describe an ultralow-loss and high-reflectance mirror at 1064 nm. A Fabry –Perot cavity is fabricated with two mirrors to measure the finesse and the transmission efficiency on resonance. The finesse was cross checked by two different methods: measurements of the cavity decay time and of the frequency-response function. As a result, a loss of 6 ± 6 × 10−6 (6 ± 6 parts in 106, scatter and absorption) and a finesse of 2236 ± 54 were measured during the cavity decay time. This result coincides with that of the response function within accuracies cited above. To our knowledge, the loss is the lowest obtained at 1064 nm.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, A. Rüdiger, Phys. Rev. D 38, 423 (1988).
    [CrossRef]
  2. N. Uehara, K. Ueda, Opt. Lett. 18, 505 (1993).
    [CrossRef] [PubMed]
  3. D. Z. Anderson, J. C. Frisch, C. S. Masser, Appl. Opt. 23, 1238 (1984).
    [CrossRef] [PubMed]
  4. N. A. Robertson, K. A. Strain, J. Hough, Opt. Commun. 69, 345 (1989).
    [CrossRef]
  5. G. Rempe, R. J. Thompson, H. J. Kimble, R. Lalezari, Opt. Lett. 17, 363 (1992).
    [CrossRef] [PubMed]
  6. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. WardAppl. Phys. B 31, 97 (1983).
    [CrossRef]
  7. N. Uehara, K. Ueda, “Accurate measurement of ultralow loss in a high-finesse Fabry– Perot interferometer using the frequency response functions,” Appl. Phys. B (to be published).

1993

1992

1989

N. A. Robertson, K. A. Strain, J. Hough, Opt. Commun. 69, 345 (1989).
[CrossRef]

1988

D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, A. Rüdiger, Phys. Rev. D 38, 423 (1988).
[CrossRef]

1984

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. WardAppl. Phys. B 31, 97 (1983).
[CrossRef]

Anderson, D. Z.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. WardAppl. Phys. B 31, 97 (1983).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. WardAppl. Phys. B 31, 97 (1983).
[CrossRef]

Frisch, J. C.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. WardAppl. Phys. B 31, 97 (1983).
[CrossRef]

Hough, J.

N. A. Robertson, K. A. Strain, J. Hough, Opt. Commun. 69, 345 (1989).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. WardAppl. Phys. B 31, 97 (1983).
[CrossRef]

Kimble, H. J.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. WardAppl. Phys. B 31, 97 (1983).
[CrossRef]

Lalezari, R.

Maischberger, K.

D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, A. Rüdiger, Phys. Rev. D 38, 423 (1988).
[CrossRef]

Masser, C. S.

Munleyand, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. WardAppl. Phys. B 31, 97 (1983).
[CrossRef]

Rempe, G.

Robertson, N. A.

N. A. Robertson, K. A. Strain, J. Hough, Opt. Commun. 69, 345 (1989).
[CrossRef]

Rüdiger, A.

D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, A. Rüdiger, Phys. Rev. D 38, 423 (1988).
[CrossRef]

Schilling, R.

D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, A. Rüdiger, Phys. Rev. D 38, 423 (1988).
[CrossRef]

Schnupp, L.

D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, A. Rüdiger, Phys. Rev. D 38, 423 (1988).
[CrossRef]

Shoemaker, D.

D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, A. Rüdiger, Phys. Rev. D 38, 423 (1988).
[CrossRef]

Strain, K. A.

N. A. Robertson, K. A. Strain, J. Hough, Opt. Commun. 69, 345 (1989).
[CrossRef]

Thompson, R. J.

Ueda, K.

N. Uehara, K. Ueda, Opt. Lett. 18, 505 (1993).
[CrossRef] [PubMed]

N. Uehara, K. Ueda, “Accurate measurement of ultralow loss in a high-finesse Fabry– Perot interferometer using the frequency response functions,” Appl. Phys. B (to be published).

Uehara, N.

N. Uehara, K. Ueda, Opt. Lett. 18, 505 (1993).
[CrossRef] [PubMed]

N. Uehara, K. Ueda, “Accurate measurement of ultralow loss in a high-finesse Fabry– Perot interferometer using the frequency response functions,” Appl. Phys. B (to be published).

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. WardAppl. Phys. B 31, 97 (1983).
[CrossRef]

Winkler, W.

D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, A. Rüdiger, Phys. Rev. D 38, 423 (1988).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munleyand, H. WardAppl. Phys. B 31, 97 (1983).
[CrossRef]

Opt. Commun.

N. A. Robertson, K. A. Strain, J. Hough, Opt. Commun. 69, 345 (1989).
[CrossRef]

Opt. Lett.

Phys. Rev. D

D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, A. Rüdiger, Phys. Rev. D 38, 423 (1988).
[CrossRef]

Other

N. Uehara, K. Ueda, “Accurate measurement of ultralow loss in a high-finesse Fabry– Perot interferometer using the frequency response functions,” Appl. Phys. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup of measurements of cavity decay time and response function of a Fabry–Perot cavity. A cw laser is frequency stabilized to the TEM00 longitudinal mode by the Pound– Drever–Hall technique. DBM, double-balanced mixer; PZT, piezoelectric transducer.

Fig. 2
Fig. 2

Transmitted intensity detected by PD 2. The incident intensity is modulated by OSC 1 with a rectangular wave (modulation depth ≤10%) in a stabilized state. This figure shows a single shot, and 20 samples are measured. The decay time is determined to be 958 ± 22 ns.

Fig. 3
Fig. 3

Frequency-response function of the Fabry–Perot cavity in a stabilized state. Intensity-modulated sidebands generated by OSC 2 are swept from 10 kHz to 1 MHz. The 3-dB down point is the cutoff frequency (fc = Δνc/2). This figure is averaged with 20 samples. The cutoff frequency is measured to be 165 ± 5 kHz.

Tables (1)

Tables Icon

Table 1 Measured Optical Characteristics for Two Different Methodsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

= π R 1 R = FSR Δ ν c ,
η T = P T P i = T 2 ( A + T ) 2 ,
| H ( f ) | = η T 1 [ 1 + ( f f c ) 2 ] 1 / 2 ,

Metrics