Abstract

Optical imaging through highly scattering media was studied in the 1.3-μm wavelength region by use of a continuous-wave Nd:YAG laser and an optical heterodyne detection technique. We measured and compared the extinction coefficients of the fat emulsion Intralipid-10% at 0.80, 1.064, and 1.319 μm and demonstrated that the low scattering at 1.319 μm will permit optical imaging through highly scattering media, which otherwise may not be achieved. A possible use of water absorption at 1.319 μm to image the interior structure of biological tissues is also presented and discussed.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, theDigest of Topical Meeting on Advances in Optical Imaging and Photon Migration (Optical Society of America, Washington, D.C., 1994).
  2. G. Müller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Karchke, B. Masters, S. Svanberg, P. van der Zee, eds., Medical Optical Tomography: Functional Imaging and Monitoring (SPIE Optical Engineering Press, Bellingham, Wash., 1993).
  3. M. Toida, M. Kondo, T. Ichimura, H. Inaba, Electron. Lett. 26, 700 (1990).
    [CrossRef]
  4. M. Toida, T. Ichimura, H. Inaba, Inst. Electr. Inf. Commun. Eng. Trans. E74, 1692 (1991).
  5. M. Toida, M. Kondo, T. Ichimura, H. Inaba, Appl. Phys. B 52, 391 (1991).
    [CrossRef]
  6. H. Inaba, Appl. Phys. B 52 Ref. 2, pp. 317–347; K. P. Chan, M. Yamada, H. Inaba, Electron. Lett. 30, 1753 (1994).
    [CrossRef] [PubMed]
  7. B. B. Das, K. M. Yoo, R. R. Alfano, Opt. Lett. 18, 1092 (1993).
    [CrossRef] [PubMed]
  8. R. Berg, O. Jarlman, S. Svanberg, Appl. Opt. 32, 574 (1993).
    [CrossRef] [PubMed]
  9. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, Opt. Lett. 18, 950 (1993).
    [CrossRef] [PubMed]
  10. L. L. Kalpaxis, L. M. Wang, P. Galland, X. Liang, P. P. Ho, R. R. Alfano, Opt. Lett. 18, 1691 (1993).
    [CrossRef] [PubMed]
  11. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, Appl. Opt. 30, 4507 (1991).
    [CrossRef] [PubMed]
  12. B. C. Wilson, S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
    [CrossRef]
  13. J. J. Dolne, F. Liu, K. M. Yoo, R. R. Alfano, Ref. 1, paper TuD2.

1993 (4)

1991 (3)

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, Appl. Opt. 30, 4507 (1991).
[CrossRef] [PubMed]

M. Toida, T. Ichimura, H. Inaba, Inst. Electr. Inf. Commun. Eng. Trans. E74, 1692 (1991).

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

1990 (2)

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Electron. Lett. 26, 700 (1990).
[CrossRef]

B. C. Wilson, S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

Alfano, R. R.

Berg, R.

Das, B. B.

Dolne, J. J.

J. J. Dolne, F. Liu, K. M. Yoo, R. R. Alfano, Ref. 1, paper TuD2.

Fujimoto, J. G.

Galland, P.

Hee, M. R.

Ho, P. P.

Ichimura, T.

M. Toida, T. Ichimura, H. Inaba, Inst. Electr. Inf. Commun. Eng. Trans. E74, 1692 (1991).

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Electron. Lett. 26, 700 (1990).
[CrossRef]

Inaba, H.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

M. Toida, T. Ichimura, H. Inaba, Inst. Electr. Inf. Commun. Eng. Trans. E74, 1692 (1991).

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Electron. Lett. 26, 700 (1990).
[CrossRef]

H. Inaba, Appl. Phys. B 52 Ref. 2, pp. 317–347; K. P. Chan, M. Yamada, H. Inaba, Electron. Lett. 30, 1753 (1994).
[CrossRef] [PubMed]

Izatt, J. A.

Jacobson, J. M.

Jacques, S. L.

B. C. Wilson, S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

Jarlman, O.

Kalpaxis, L. L.

Kondo, M.

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Electron. Lett. 26, 700 (1990).
[CrossRef]

Liang, X.

Liu, F.

J. J. Dolne, F. Liu, K. M. Yoo, R. R. Alfano, Ref. 1, paper TuD2.

Moes, C. J. M.

Prahl, S. A.

Svanberg, S.

Toida, M.

M. Toida, T. Ichimura, H. Inaba, Inst. Electr. Inf. Commun. Eng. Trans. E74, 1692 (1991).

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Electron. Lett. 26, 700 (1990).
[CrossRef]

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. J.

Wang, L. M.

Wilson, B. C.

B. C. Wilson, S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

Yoo, K. M.

B. B. Das, K. M. Yoo, R. R. Alfano, Opt. Lett. 18, 1092 (1993).
[CrossRef] [PubMed]

J. J. Dolne, F. Liu, K. M. Yoo, R. R. Alfano, Ref. 1, paper TuD2.

Appl. Opt. (2)

Appl. Phys. B (2)

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

H. Inaba, Appl. Phys. B 52 Ref. 2, pp. 317–347; K. P. Chan, M. Yamada, H. Inaba, Electron. Lett. 30, 1753 (1994).
[CrossRef] [PubMed]

Electron. Lett. (1)

M. Toida, M. Kondo, T. Ichimura, H. Inaba, Electron. Lett. 26, 700 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. C. Wilson, S. L. Jacques, IEEE J. Quantum Electron. 26, 2186 (1990).
[CrossRef]

Inst. Electr. Inf. Commun. Eng. Trans. (1)

M. Toida, T. Ichimura, H. Inaba, Inst. Electr. Inf. Commun. Eng. Trans. E74, 1692 (1991).

Opt. Lett. (3)

Other (3)

See, for example, theDigest of Topical Meeting on Advances in Optical Imaging and Photon Migration (Optical Society of America, Washington, D.C., 1994).

G. Müller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Karchke, B. Masters, S. Svanberg, P. van der Zee, eds., Medical Optical Tomography: Functional Imaging and Monitoring (SPIE Optical Engineering Press, Bellingham, Wash., 1993).

J. J. Dolne, F. Liu, K. M. Yoo, R. R. Alfano, Ref. 1, paper TuD2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup.

Fig. 2
Fig. 2

Detected heterodyne signal intensity as a function of the Intralipid-10% concentration in 1-cm-thick saline–Intralipid solutions at the three investigated wavelengths.

Fig. 3
Fig. 3

Two-dimensional image of a National Bureau of Standards test chart hidden behind a 1-cm-thick saline–Intralipid scattering medium with 10% Intralipid-10% concentration, detected with 800-μW incident power at 1.319 μm.

Fig. 4
Fig. 4

Measured transmission of 1-cm-thick saline water in the near-infrared wavelength region with 1-nm spectral resolution.

Fig. 5
Fig. 5

Two-dimensional image of three 1-mm-thick glass slides immersed in a 1-cm-thick saline-Intralipid scattering medium with 6% Intralipid-10% concentration. The inset (top) depicts the stacked glass slides with successive lateral shift in the medium.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 exp ( - μ c L ) ,

Metrics