Abstract

The optical-limiting behavior and two-photon absorption properties of four novel organic compound solutions in tetrahydrofuran have been investigated. An ultrashort laser source with 0.5-ps pulse width and 602-nm wavelength was employed. The transmissivities of the various 1-cm-thick solution samples have been measured as a function of the beam intensity as well as of the solute concentration. The measured results can be fitted on the assumption that two-photon absorption is the only predominant mechanism causing the observed optical-limiting behavior. Based on the intensity-dependent transmissivity measurements, the molecular two-photon absorption coefficients for the four compounds are presented.

© 1995 Optical Society of America

Full Article  |  PDF Article

Corrections

Guang S. He, Bruce A. Reinhardt, Jay C. Bhatt, Ann G. Dillard, Robert McKellar, C. Xu, and Paras N. Prasad, "Two-photon absorption and optical-limiting properties of novel organic compounds: erratum," Opt. Lett. 20, 1930-1930 (1995)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-20-18-1930

References

  • View by:
  • |
  • |
  • |

  1. L. W. Tuff, T. F. Boggess, Prog. Quantum Electron. 17, 299 (1993).
    [CrossRef]
  2. J. M. Ralston, R. K. Chang, Appl. Phys. Lett. 15, 164 (1969).
    [CrossRef]
  3. T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985).
    [CrossRef]
  4. A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, Appl. Phys. Lett. 48, 683 (1986).
    [CrossRef]
  5. Y. C. Chang, A. E. Chiou, M. Khoshnevissan, J. Appl. Phys. 71, 1349 (1992).
    [CrossRef]
  6. E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, Opt. Eng. 24, 613 (1985).
  7. D. C. Hutchings, E. W. Van Stryland, J. Opt. Soc. Am. B 9, 2065 (1992).
    [CrossRef]
  8. T. F. Boggess, K. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quantum Electron. QE-22, 360 (1986).
    [CrossRef]

1993 (1)

L. W. Tuff, T. F. Boggess, Prog. Quantum Electron. 17, 299 (1993).
[CrossRef]

1992 (2)

Y. C. Chang, A. E. Chiou, M. Khoshnevissan, J. Appl. Phys. 71, 1349 (1992).
[CrossRef]

D. C. Hutchings, E. W. Van Stryland, J. Opt. Soc. Am. B 9, 2065 (1992).
[CrossRef]

1986 (2)

T. F. Boggess, K. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quantum Electron. QE-22, 360 (1986).
[CrossRef]

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, Appl. Phys. Lett. 48, 683 (1986).
[CrossRef]

1985 (2)

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985).
[CrossRef]

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, Opt. Eng. 24, 613 (1985).

1969 (1)

J. M. Ralston, R. K. Chang, Appl. Phys. Lett. 15, 164 (1969).
[CrossRef]

Bogess, T. F.

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, Opt. Eng. 24, 613 (1985).

Boggess, T. F.

L. W. Tuff, T. F. Boggess, Prog. Quantum Electron. 17, 299 (1993).
[CrossRef]

T. F. Boggess, K. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quantum Electron. QE-22, 360 (1986).
[CrossRef]

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985).
[CrossRef]

Bohnert, K.

T. F. Boggess, K. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quantum Electron. QE-22, 360 (1986).
[CrossRef]

Boyd, I. W.

T. F. Boggess, K. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quantum Electron. QE-22, 360 (1986).
[CrossRef]

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985).
[CrossRef]

Chang, R. K.

J. M. Ralston, R. K. Chang, Appl. Phys. Lett. 15, 164 (1969).
[CrossRef]

Chang, Y. C.

Y. C. Chang, A. E. Chiou, M. Khoshnevissan, J. Appl. Phys. 71, 1349 (1992).
[CrossRef]

Chiou, A. E.

Y. C. Chang, A. E. Chiou, M. Khoshnevissan, J. Appl. Phys. 71, 1349 (1992).
[CrossRef]

Guha, S.

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, Opt. Eng. 24, 613 (1985).

Hutchings, D. C.

Kar, A. K.

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, Appl. Phys. Lett. 48, 683 (1986).
[CrossRef]

Keller, U.

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, Appl. Phys. Lett. 48, 683 (1986).
[CrossRef]

Khoshnevissan, M.

Y. C. Chang, A. E. Chiou, M. Khoshnevissan, J. Appl. Phys. 71, 1349 (1992).
[CrossRef]

Mansour, K.

T. F. Boggess, K. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quantum Electron. QE-22, 360 (1986).
[CrossRef]

Moss, S. C.

T. F. Boggess, K. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quantum Electron. QE-22, 360 (1986).
[CrossRef]

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985).
[CrossRef]

Ralston, J. M.

J. M. Ralston, R. K. Chang, Appl. Phys. Lett. 15, 164 (1969).
[CrossRef]

Smirl, A. L.

T. F. Boggess, K. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quantum Electron. QE-22, 360 (1986).
[CrossRef]

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985).
[CrossRef]

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, Opt. Eng. 24, 613 (1985).

Smith, S. D.

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, Appl. Phys. Lett. 48, 683 (1986).
[CrossRef]

Soileau, M. J.

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, Opt. Eng. 24, 613 (1985).

Tuff, L. W.

L. W. Tuff, T. F. Boggess, Prog. Quantum Electron. 17, 299 (1993).
[CrossRef]

Van Stryland, E. W.

D. C. Hutchings, E. W. Van Stryland, J. Opt. Soc. Am. B 9, 2065 (1992).
[CrossRef]

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985).
[CrossRef]

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, Opt. Eng. 24, 613 (1985).

Vanherzeele, H.

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, Opt. Eng. 24, 613 (1985).

Walker, A. C.

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, Appl. Phys. Lett. 48, 683 (1986).
[CrossRef]

Wei, Ji

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, Appl. Phys. Lett. 48, 683 (1986).
[CrossRef]

Woodall, M. A.

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, Opt. Eng. 24, 613 (1985).

Appl. Phys. Lett. (2)

J. M. Ralston, R. K. Chang, Appl. Phys. Lett. 15, 164 (1969).
[CrossRef]

A. C. Walker, A. K. Kar, Ji Wei, U. Keller, S. D. Smith, Appl. Phys. Lett. 48, 683 (1986).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985).
[CrossRef]

T. F. Boggess, K. Bohnert, K. Mansour, S. C. Moss, I. W. Boyd, A. L. Smirl, IEEE J. Quantum Electron. QE-22, 360 (1986).
[CrossRef]

J. Appl. Phys. (1)

Y. C. Chang, A. E. Chiou, M. Khoshnevissan, J. Appl. Phys. 71, 1349 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, T. F. Bogess, Opt. Eng. 24, 613 (1985).

Prog. Quantum Electron. (1)

L. W. Tuff, T. F. Boggess, Prog. Quantum Electron. 17, 299 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

One-photon absorption spectra and molecular structures of four organic compounds: (a) I (3 × 10−4 M/L in THF), (b) II (4 × 10−4 M/L in THF), (c) III (3 × 10−4 M/L in THF), and (d) IV (2.5 × 10−4 M/L in THF). The absorption influences from the liquid cell and the pure solvent have been subtracted.

Fig. 2
Fig. 2

Transmissivity of compound I solution in THF with a concentration of 5.1 × 10−2 M/L versus the input laser beam intensity. The solid curve is given by Eq. (2) with a fitting parameter of β = 0.8 cm/GW.

Fig. 3
Fig. 3

Transmissivity of compound I solution in THF versus the solute concentration. The solid curve is given by Eq. (4) by using a fitting parameter of σ2 = 2.6 × 10−20 cm4/GW. The input intensity I0 = 2.21 GW/cm2.

Fig. 4
Fig. 4

Optical-limiting behavior of compound I solution in THF with a higher concentration (1.5 × 10−1 M/L). The solid curve is given by Eq. (4) by using the same fitting parameter of σ2 = 2.6 × 10−20 cm4/GW; the straight dashed line is given by assuming a linear medium with σ2 = 0.

Tables (1)

Tables Icon

Table 1 TPA Data of Novel Organic Compounds in THF

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ( I 0 ) = I ( L ) / I 0 = 1 / ( 1 + I 0 L β ) ,
T ( I 0 ) = I ( L ) / I 0 = [ ln ( 1 + I 0 L β ) ] / I 0 L β .
β = σ 2 N 0 = σ 2 N A d × 10 - 3 .
T ( I 0 , d ) = [ ln ( 1 + I 0 L σ 2 N A d × 10 - 3 ) ] / ( I 0 L σ 2 N A d × 10 - 3 ) .
σ 2 = h ν σ 2 .

Metrics