Abstract

We present images of heterogeneous turbid media derived from measurements of diffuse photon-density waves traveling through highly scattering tissue phantoms. To our knowledge, the images are the first experimental reconstruction based on data collected in the frequency domain. We demonstrate images of both absorbing and scattering heterogeneities and show that this method is sensitive to the optical properties of the heterogeneity. The algorithm employs a differential measurement scheme that reduces the effect of errors resulting from incorrect estimation of the background optical properties. The relative advantages of sources with low and high modulation frequency are discussed within this context.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image reconstruction by backprojection from frequency-domain optical measurements in highly scattering media

Scott A. Walker, Sergio Fantini, and Enrico Gratton
Appl. Opt. 36(1) 170-179 (1997)

Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability

Huabei Jiang, Keith D. Paulsen, Ulf L. Österberg, and Michael S. Patterson
Appl. Opt. 36(1) 52-63 (1997)

Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance

Tuan H. Pham, Thorsten Spott, Lars O. Svaasand, and Bruce J. Tromberg
Appl. Opt. 39(25) 4733-4745 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription