Abstract

An interferometer with an efficient confocal layout is described. Similar in structure to a folded Linnik microscope, the interferometer employs broadband illumination to improve rejection of out-of-focus light. A prototype reflectometry system based on the new interferometer achieved an axial resolution of less than 10 μm within a probing depth of 1 mm in samples containing particulate scatterers and specularly reflecting objects. Options for mechanical and electronic scanning are discussed.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Danielson, C. D. Whittenburg, Appl. Opt. 26, 2836 (1987).
    [CrossRef] [PubMed]
  2. K. Takada, I. Yokohama, K. Chida, J. Noda, Appl. Opt. 26, 1603 (1987).
    [CrossRef] [PubMed]
  3. B. S. Lee, T. C. Strand, Appl. Opt. 29, 3784 (1990).
    [CrossRef] [PubMed]
  4. G. S. Kino, S. S. C. Chim, Appl. Opt. 29, 3775 (1990).
    [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  6. J. M. Schmitt, A. Knüttel, R. F. Bonner, Appl. Opt. 32, 6032 (1993).
    [CrossRef] [PubMed]
  7. J. M. Schmitt, A. Knüttel, M. Yadlowsky, Phys. Med. Biol. 39, 1705 (1994).
    [CrossRef] [PubMed]
  8. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), p. 166.
  9. M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, Opt. Lett. 18, 1107 (1993).
    [CrossRef] [PubMed]

1994 (1)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, Phys. Med. Biol. 39, 1705 (1994).
[CrossRef] [PubMed]

1993 (2)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

1990 (2)

1987 (2)

Bonner, R. F.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Chida, K.

Chim, S. S. C.

Danielson, B. L.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, Opt. Lett. 18, 1107 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), p. 166.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Hee, M. R.

M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, Opt. Lett. 18, 1107 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Kino, G. S.

Knüttel, A.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, Phys. Med. Biol. 39, 1705 (1994).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knüttel, R. F. Bonner, Appl. Opt. 32, 6032 (1993).
[CrossRef] [PubMed]

Lee, B. S.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Noda, J.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, Phys. Med. Biol. 39, 1705 (1994).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knüttel, R. F. Bonner, Appl. Opt. 32, 6032 (1993).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Strand, T. C.

Swanson, E. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, Opt. Lett. 18, 1107 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Takada, K.

Whittenburg, C. D.

Yadlowsky, M.

J. M. Schmitt, A. Knüttel, M. Yadlowsky, Phys. Med. Biol. 39, 1705 (1994).
[CrossRef] [PubMed]

Yokohama, I.

Appl. Opt. (5)

Opt. Lett. (1)

Phys. Med. Biol. (1)

J. M. Schmitt, A. Knüttel, M. Yadlowsky, Phys. Med. Biol. 39, 1705 (1994).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Other (1)

J. W. Goodman, Statistical Optics (Wiley, New York, 1985), p. 166.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Layout of the in-line interferometer.

Fig. 2
Fig. 2

Ray diagram showing the unfolded path of the sample beam: S, source; L1, input lens; BS, beam splitter; SM, sample; M, mirror; L2, output lens; D, detector.

Fig. 3
Fig. 3

Equivalent layout of the interferometer obtained by treating the reflections from the reference mirror and sample as secondary sources.

Fig. 4
Fig. 4

Signals recorded from a suspension of 0.22-μm-diameter (2.5%) latex spheres, shown normalized to the magnitude of the front air–glass reflection. Inset: Front air–glass reflection plotted on a linear scale.

Fig. 5
Fig. 5

Top: Cross-sectional drawing of the LED package. Bottom: Image obtained by translating the probe beam of the reflectometer across the center of a LED.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( x , y ) A α 2 i x - x 0 exp [ i ( w t - 4 k f ) ] × exp ( - i k x 0 2 2 f ) J 1 ( k α 2 x - x 0 ) ,
I ( Δ z ) [ sin ( k Δ z α 2 / 2 ) ( k Δ z α 2 / 2 ) ] 2 .
γ ( τ ) = exp [ - ( π c Δ λ τ 2 ln 2 λ c 2 ) 2 ] , = exp [ - ( Δ z / L c ) 2 ] ,

Metrics