Abstract

The characteristics of the output polarization angle and the polarization-mode beat frequency of a twisted fiber laser are investigated. A theoretical model is used to describe successfully the polarization properties.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulich, A. Simon, Appl. Opt. 18, 2241 (1979).
    [CrossRef]
  2. H. K. Kim, S. K. Kim, H. G. Park, B. Y. Kim, Opt. Lett. 18, 317 (1993).
    [CrossRef] [PubMed]
  3. H. K. Kim, S. K. Kim, B. Y. Kim, Opt. Lett. 18, 1465 (1993).
    [CrossRef] [PubMed]
  4. G. A. Ball, G. Meltz, W. W. Morey, Opt. Lett. 18, 1976 (1993).
    [CrossRef] [PubMed]
  5. B. Lamouroux, B. Prade, A. Orszag, Opt. Lett. 7, 391 (1982).
    [CrossRef] [PubMed]
  6. R. Ulrich, in Fiber-Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, New York, 1982), p. 54.

1993 (3)

1982 (1)

1979 (1)

Ball, G. A.

Kim, B. Y.

Kim, H. K.

Kim, S. K.

Lamouroux, B.

Meltz, G.

Morey, W. W.

Orszag, A.

Park, H. G.

Prade, B.

Simon, A.

Ulich, R.

Ulrich, R.

R. Ulrich, in Fiber-Optic Rotation Sensors and Related Technologies, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, New York, 1982), p. 54.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a twisted fiber laser cavity. M1, M2, mirrors.

Fig. 2
Fig. 2

Theoretical polarization properties of a twisted fiber laser (g = 0.16, β = 1.8 rad/m, l = 0.95 m).

Fig. 3
Fig. 3

Dependence of polarization direction on twist angle.

Fig. 4
Fig. 4

Variation of PMB frequency as a function of twist angle.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A A T = [ a + b i i c i c a - b i ] ,
Δ f P = c 2 π n l arccos [ cos δ + sin 2 2 B ( 1 - cos δ ) ] ,             ( 0 Δ f P c / 2 n l ) ,
θ = arctan sin 2 B sin ( δ / 2 ) cos ( δ / 2 ) ± { [ cos ( δ / 2 ) ] 2 + [ sin ( δ / 2 ) sin 2 B ] 2 } 1 / 2 ,             ( - π / 2 θ π / 2 ) .
C = [ exp i δ d / 2 0 0 exp - i δ d / 2 ] ,

Metrics