Abstract

We show that input and output coupling have an extremely strong effect on the performance of a metal-clad polarizer integrated in an optical circuit, with the extinction ratios showing large oscillations for small changes in device length for conventional low-index buffers. We further show that if high-index buffers are used, very high extinction ratios for very short devices can be achieved; moreover, such devices are insensitive to small changes in device lengths.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. E. Batchman, S. C. Rashleigh, IEEE J. Quantum Electron. QE-8, 848 (1972).
    [Crossref]
  2. F. K. Reinhart, R. A. Shelton, B. W. Lee, Appl. Phy. Lett. 36, 237 (1980).
    [Crossref]
  3. I. P. Kaminow, W. L. Mammel, H. P. Weber, Appl. Opt. 13, 396 (1974).
    [Crossref] [PubMed]
  4. J. Ctyroky, H. J. Henning, Electron. Lett. 22, 757 (1986).
  5. Z. H. Wang, S. R. Sheshadri, J. Opt. Soc. Am. A 6, 142 (1989).
    [Crossref]
  6. C. Ma, S. Liu, J. Opt. Soc. Am. A 7, 1577 (1990).
    [Crossref]
  7. K. Thyagarajan, S. Diggavi, A. K. Ghatak, Electron. Lett. 24, 869 (1988).
    [Crossref]
  8. L. Li, G. Wylangowski, D. N. Payne, R. D. Birch, Electron. Lett. 22, 1020 (1986).
    [Crossref]
  9. R. B. Dyott, J. Bello, V. A. Handerek, Opt. Lett. 12, 287 (1987).
    [Crossref] [PubMed]
  10. W. Johnston, G. Stewart, B. Culshaw, T. Hart, Electron. Lett. 8, 538 (1990).
  11. J. Chilwell, I. Hodgekinson, J. Opt. Soc. Am. A 1, 742 (1984).
    [Crossref]
  12. K. H. Schlereth, M. Tacke, IEEE J. Quantum Electron. 26, 627 (1990).
    [Crossref]
  13. E. K. Sharma, M. P. Singh, J. Opt. Commun. 14, 134 (1993).
    [Crossref]

1993 (1)

E. K. Sharma, M. P. Singh, J. Opt. Commun. 14, 134 (1993).
[Crossref]

1990 (3)

K. H. Schlereth, M. Tacke, IEEE J. Quantum Electron. 26, 627 (1990).
[Crossref]

W. Johnston, G. Stewart, B. Culshaw, T. Hart, Electron. Lett. 8, 538 (1990).

C. Ma, S. Liu, J. Opt. Soc. Am. A 7, 1577 (1990).
[Crossref]

1989 (1)

1988 (1)

K. Thyagarajan, S. Diggavi, A. K. Ghatak, Electron. Lett. 24, 869 (1988).
[Crossref]

1987 (1)

1986 (2)

L. Li, G. Wylangowski, D. N. Payne, R. D. Birch, Electron. Lett. 22, 1020 (1986).
[Crossref]

J. Ctyroky, H. J. Henning, Electron. Lett. 22, 757 (1986).

1984 (1)

1980 (1)

F. K. Reinhart, R. A. Shelton, B. W. Lee, Appl. Phy. Lett. 36, 237 (1980).
[Crossref]

1974 (1)

1972 (1)

T. E. Batchman, S. C. Rashleigh, IEEE J. Quantum Electron. QE-8, 848 (1972).
[Crossref]

Batchman, T. E.

T. E. Batchman, S. C. Rashleigh, IEEE J. Quantum Electron. QE-8, 848 (1972).
[Crossref]

Bello, J.

Birch, R. D.

L. Li, G. Wylangowski, D. N. Payne, R. D. Birch, Electron. Lett. 22, 1020 (1986).
[Crossref]

Chilwell, J.

Ctyroky, J.

J. Ctyroky, H. J. Henning, Electron. Lett. 22, 757 (1986).

Culshaw, B.

W. Johnston, G. Stewart, B. Culshaw, T. Hart, Electron. Lett. 8, 538 (1990).

Diggavi, S.

K. Thyagarajan, S. Diggavi, A. K. Ghatak, Electron. Lett. 24, 869 (1988).
[Crossref]

Dyott, R. B.

Ghatak, A. K.

K. Thyagarajan, S. Diggavi, A. K. Ghatak, Electron. Lett. 24, 869 (1988).
[Crossref]

Handerek, V. A.

Hart, T.

W. Johnston, G. Stewart, B. Culshaw, T. Hart, Electron. Lett. 8, 538 (1990).

Henning, H. J.

J. Ctyroky, H. J. Henning, Electron. Lett. 22, 757 (1986).

Hodgekinson, I.

Johnston, W.

W. Johnston, G. Stewart, B. Culshaw, T. Hart, Electron. Lett. 8, 538 (1990).

Kaminow, I. P.

Lee, B. W.

F. K. Reinhart, R. A. Shelton, B. W. Lee, Appl. Phy. Lett. 36, 237 (1980).
[Crossref]

Li, L.

L. Li, G. Wylangowski, D. N. Payne, R. D. Birch, Electron. Lett. 22, 1020 (1986).
[Crossref]

Liu, S.

Ma, C.

Mammel, W. L.

Payne, D. N.

L. Li, G. Wylangowski, D. N. Payne, R. D. Birch, Electron. Lett. 22, 1020 (1986).
[Crossref]

Rashleigh, S. C.

T. E. Batchman, S. C. Rashleigh, IEEE J. Quantum Electron. QE-8, 848 (1972).
[Crossref]

Reinhart, F. K.

F. K. Reinhart, R. A. Shelton, B. W. Lee, Appl. Phy. Lett. 36, 237 (1980).
[Crossref]

Schlereth, K. H.

K. H. Schlereth, M. Tacke, IEEE J. Quantum Electron. 26, 627 (1990).
[Crossref]

Sharma, E. K.

E. K. Sharma, M. P. Singh, J. Opt. Commun. 14, 134 (1993).
[Crossref]

Shelton, R. A.

F. K. Reinhart, R. A. Shelton, B. W. Lee, Appl. Phy. Lett. 36, 237 (1980).
[Crossref]

Sheshadri, S. R.

Singh, M. P.

E. K. Sharma, M. P. Singh, J. Opt. Commun. 14, 134 (1993).
[Crossref]

Stewart, G.

W. Johnston, G. Stewart, B. Culshaw, T. Hart, Electron. Lett. 8, 538 (1990).

Tacke, M.

K. H. Schlereth, M. Tacke, IEEE J. Quantum Electron. 26, 627 (1990).
[Crossref]

Thyagarajan, K.

K. Thyagarajan, S. Diggavi, A. K. Ghatak, Electron. Lett. 24, 869 (1988).
[Crossref]

Wang, Z. H.

Weber, H. P.

Wylangowski, G.

L. Li, G. Wylangowski, D. N. Payne, R. D. Birch, Electron. Lett. 22, 1020 (1986).
[Crossref]

Appl. Opt. (1)

Appl. Phy. Lett. (1)

F. K. Reinhart, R. A. Shelton, B. W. Lee, Appl. Phy. Lett. 36, 237 (1980).
[Crossref]

Electron. Lett. (4)

K. Thyagarajan, S. Diggavi, A. K. Ghatak, Electron. Lett. 24, 869 (1988).
[Crossref]

L. Li, G. Wylangowski, D. N. Payne, R. D. Birch, Electron. Lett. 22, 1020 (1986).
[Crossref]

J. Ctyroky, H. J. Henning, Electron. Lett. 22, 757 (1986).

W. Johnston, G. Stewart, B. Culshaw, T. Hart, Electron. Lett. 8, 538 (1990).

IEEE J. Quantum Electron. (2)

K. H. Schlereth, M. Tacke, IEEE J. Quantum Electron. 26, 627 (1990).
[Crossref]

T. E. Batchman, S. C. Rashleigh, IEEE J. Quantum Electron. QE-8, 848 (1972).
[Crossref]

J. Opt. Commun. (1)

E. K. Sharma, M. P. Singh, J. Opt. Commun. 14, 134 (1993).
[Crossref]

J. Opt. Soc. Am. A (3)

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Input, polarizing, and output sections of a typical metal-clad waveguide polarizer.

Fig. 2
Fig. 2

Oscillating behavior of extinction ratio R with changing device length for a polarizer with an anodized oxide buffer2 after output coupling (z+). R before output coupling is marked by (z). n2(GaAlAs) = 11.7438, n2(GaAs) = 12.0895, and n2(Au) = −57.42 − i1.245. The thicknesses of the GaAs core, buffer, and metal layer are 1.06 μm, 6.3 nm, and 0.2 μm, respectively.

Fig. 3
Fig. 3

Oscillating behavior of extinction ratio R with changing device length for a polarizer with a SiN buffer after output coupling (z+). R before output coupling is marked by (z).

Fig. 4
Fig. 4

Extinction ratio versus device length for a polarizer with an AlGaAs buffer before output coupling (z) and after output coupling (z+). Extremely high extinction ratios are possible, and there are no rapid oscillations with device length.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ψ 1 = A 1 exp ( γ 1 x ) ,             x x 0 , ψ m = A m cos [ γ m ( x - x m ) ] + B m sin [ γ m ( x - x m ) ] ,             1 < m N ,
1 2 ( 0 μ 0 ) 1 / 2 n e - e j e k d x = δ j k             for     TE     modes , 1 2 ( μ 0 0 ) 1 / 2 n e - h j h k n 2 ( x ) d x = δ j k             for     TM     modes .
ψ 0 ( x ) = l c l ψ l ( x ) ,
c l = 1 2 n e l - ψ 0 ( x ) ψ l ( x ) d x             for     TE     modes , = 1 2     n e l     - ψ 0 ( x ) ψ l ( x ) n 2 ( x ) d x             for     TM     modes ,
ψ t ( x ) = l c l ψ l ( x ) exp ( - i β l z ) ,
P ( z ) = j k P j k ,
P j k = 1 2 Re { c j c k * n e k * exp [ i ( β k * - β j ) z ] - e j e k * d x }             for     TE     modes , = 1 2 Re { c j c k * n e j exp [ i ( β k * - β j ) z ] - h j h k * n 2 ( x ) d x }             for     TM     modes .
P ( z ) = 1 2 Re ( c 1 2 n e 1 * - e 1 2 d x ) exp ( - α 1 z )             for     TE     modes , = 1 2 Re ( P 11 + n e 1 P 12 + n e 2 P 21 + P 22 )             for     TM     modes ,
P j j = [ c j 2 n e j - h j 2 n 2 ( x ) d x ] exp ( - α j z ) ,             j = 1 , 2 , P j k = c j c k * exp [ i k 0 ( n e k * - n e j ) z ] - h j h k * n 2 ( x ) d x ,             j , k = 1 , 2 ,
b TE = n e o c 1 2 exp ( - i β 1 z ) / n e 1 , b TM = 1 2 n e o c 1 c ˜ 1 exp [ - i ( β 1 - β 2 ) z ] + c 2 c ˜ 2 2 ,
R = 10 log P TE / P TM ,

Metrics