Abstract

We propose and demonstrate a simple off-axis scheme for particle field holography that utilizes the particle forward scattering by means of a Fourier transform lens for both recording and reconstruction. This technique has the advantages of both the low speckle noise offered by off-axis holography and the minimal laser power requirement characteristic of in-line illumination.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Meng, F. Hussain, Fluid Dyn. Res. 8, 33 (1991).
    [CrossRef]
  2. R. J. Adrian, C. D. Meinhart, D. H. Barnhart, G. C. Papen, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 17–22.
  3. F. Hussain, D. D. Liu, T. Simmons, H. Meng, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 1–12.
  4. L. P. Bernal, J. Scherer, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 43–50.
  5. H. Royer, Nouv. Rev. Opt. 5, 87 (1974).
    [CrossRef]
  6. H. Meng, W. L. Anderson, F. Hussain, D. D. Liu, J. Opt. Soc. Am. A 10, 2046 (1993).
    [CrossRef]
  7. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 83–90.
  8. R. Guenther, Modern Optics (Wiley, New York, 1990), pp. 370–376.

1993 (1)

1991 (1)

H. Meng, F. Hussain, Fluid Dyn. Res. 8, 33 (1991).
[CrossRef]

1974 (1)

H. Royer, Nouv. Rev. Opt. 5, 87 (1974).
[CrossRef]

Adrian, R. J.

R. J. Adrian, C. D. Meinhart, D. H. Barnhart, G. C. Papen, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 17–22.

Anderson, W. L.

Barnhart, D. H.

R. J. Adrian, C. D. Meinhart, D. H. Barnhart, G. C. Papen, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 17–22.

Bernal, L. P.

L. P. Bernal, J. Scherer, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 43–50.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 83–90.

Guenther, R.

R. Guenther, Modern Optics (Wiley, New York, 1990), pp. 370–376.

Hussain, F.

H. Meng, W. L. Anderson, F. Hussain, D. D. Liu, J. Opt. Soc. Am. A 10, 2046 (1993).
[CrossRef]

H. Meng, F. Hussain, Fluid Dyn. Res. 8, 33 (1991).
[CrossRef]

F. Hussain, D. D. Liu, T. Simmons, H. Meng, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 1–12.

Liu, D. D.

H. Meng, W. L. Anderson, F. Hussain, D. D. Liu, J. Opt. Soc. Am. A 10, 2046 (1993).
[CrossRef]

F. Hussain, D. D. Liu, T. Simmons, H. Meng, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 1–12.

Meinhart, C. D.

R. J. Adrian, C. D. Meinhart, D. H. Barnhart, G. C. Papen, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 17–22.

Meng, H.

H. Meng, W. L. Anderson, F. Hussain, D. D. Liu, J. Opt. Soc. Am. A 10, 2046 (1993).
[CrossRef]

H. Meng, F. Hussain, Fluid Dyn. Res. 8, 33 (1991).
[CrossRef]

F. Hussain, D. D. Liu, T. Simmons, H. Meng, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 1–12.

Papen, G. C.

R. J. Adrian, C. D. Meinhart, D. H. Barnhart, G. C. Papen, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 17–22.

Royer, H.

H. Royer, Nouv. Rev. Opt. 5, 87 (1974).
[CrossRef]

Scherer, J.

L. P. Bernal, J. Scherer, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 43–50.

Simmons, T.

F. Hussain, D. D. Liu, T. Simmons, H. Meng, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 1–12.

Fluid Dyn. Res. (1)

H. Meng, F. Hussain, Fluid Dyn. Res. 8, 33 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nouv. Rev. Opt. (1)

H. Royer, Nouv. Rev. Opt. 5, 87 (1974).
[CrossRef]

Other (5)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 83–90.

R. Guenther, Modern Optics (Wiley, New York, 1990), pp. 370–376.

R. J. Adrian, C. D. Meinhart, D. H. Barnhart, G. C. Papen, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 17–22.

F. Hussain, D. D. Liu, T. Simmons, H. Meng, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 1–12.

L. P. Bernal, J. Scherer, in Proceedings of Holographic Particle Image Velocimetry, E. P. Rood, ed. (American Society of Mechanical Engineers, Washington, D.C., 1993), pp. 43–50.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Off-axis Fourier transform holographic configuration: (a) recording, (b) reconstruction.

Fig. 2
Fig. 2

Effect of band-limited reconstruction. Particles (20-μm diameter) are modeled as opaque disks in the front focal plane with a spatial dimension of 1.02 mm × 1.024 mm. The Fourier domain is 10.24 mm× 10.24 mm with λ = 0.514 μm and f = 200 mm. The mask diameters are (a) 20%, (b) 50%, and (c) 100% of the central lobe of the Airy pattern; (d), (e), and (f ) are corresponding reconstructed images.

Fig. 3
Fig. 3

Reconstructed dense particle images.

Fig. 4
Fig. 4

Secondary focal points caused by lens surface reflections.

Fig. 5
Fig. 5

Arrangement of lens for avoiding surface reflection focal points.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( u , v ) = A [ δ ( ρ ) - π a 2 4 λ f 2 J 1 ( π a ρ λ f ) π a ρ λ f ] × F [ 1 N δ ( x - x i , y - y i ) ] ,

Metrics